A review of single image super-resolution reconstruction based on deep learning

被引:0
|
作者
Ming Yu
Jiecong Shi
Cuihong Xue
Xiaoke Hao
Gang Yan
机构
[1] Hebei University of Technology,School of Electronics and Information Engineering
[2] Hebei University of Technology,School of Artificial Intelligence
[3] Tianjin University of Technology,Technical College for the Deaf
来源
Multimedia Tools and Applications | 2024年 / 83卷
关键词
Image super-resolution; Deep learning; Convolutional neural networks; Generative adversarial networks; Transformer;
D O I
暂无
中图分类号
学科分类号
摘要
Single image super-resolution (SISR) is an important research field in computer vision, the purpose of which is to recover clear, high-resolution (HR) images from low-resolution (LR) images. With the rapid developments in deep learning theory and technology, deep learning has been introduced into the field of image super-resolution (SR), and has achieved results far beyond traditional methods in many domains. This paper summarizes current image SR algorithms based on deep learning. Firstly, the mainstream frameworks, loss functions, and datasets used for SISR are introduced in detail. Then, the SISR algorithm based on deep learning is explored using three models: a convolutional neural network (CNN), a generative adversarial network (GAN), and a transformer. Next, the evaluation indices used for SR are introduced, and the reconstruction results from various algorithms based on deep learning are compared. Finally, future trends in research on image SR algorithms based on deep learning are summarized.
引用
收藏
页码:55921 / 55962
页数:41
相关论文
共 50 条
  • [1] A review of single image super-resolution reconstruction based on deep learning
    Yu, Ming
    Shi, Jiecong
    Xue, Cuihong
    Hao, Xiaoke
    Yan, Gang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55921 - 55962
  • [2] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [3] A Review of Single Image Super-resolution Reconstruction Algorithms Based on Deep Learning
    Li J.-X.
    Zhao Y.-X.
    Wang J.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (10): : 2341 - 2363
  • [4] A Review of Single Image Super-resolution Based on Deep Learning
    Zhang N.
    Wang Y.-C.
    Zhang X.
    Xu D.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2479 - 2499
  • [5] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830
  • [6] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [7] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,
  • [8] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [9] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [10] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 (04) : 413 - 426