Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer

被引:0
作者
Jiannong Fang
Fernando Porté-Agel
机构
[1] École Polytechnique Fédérale de Lausanne (EPFL),Wind Engineering and Renewable Energy Laboratory (WIRE), Institute of Environmental Engineering (IIE), School of Architecture, Civil and Environmental Engineering (ENAC)
来源
Boundary-Layer Meteorology | 2015年 / 155卷
关键词
Large-eddy simulation; Turbulent boundary layer; Coherent structures; Very-large-scale motions;
D O I
暂无
中图分类号
学科分类号
摘要
Large-eddy simulation is used to investigate very-large-scale motions (VLSMs) in the neutrally stratified atmospheric boundary layer at a very high friction Reynolds number, Reτ∼O(108)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re{_{\tau }} \sim \mathcal {O}(10^{8})$$\end{document}. The vertical height of the computational domain is Lz=1000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{z}=1000$$\end{document} m, which corresponds to the thickness of the boundary layer. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be Lx=32πLz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{x}=32\pi L_{z}$$\end{document} and Ly=4πLz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{y}=4\pi L_{z}$$\end{document}, which is much larger than the standard domain size, especially in the streamwise direction (i.e., the direction of elongation of the flow structures). It is shown that the contributions to the resolved turbulent kinetic energy and the resolved shear stress from streamwise wavelengths larger than 10Lz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10 L_{z}$$\end{document} are up to 27 and 31 % respectively. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large, up to 20Lz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20L_{z}$$\end{document} in the streamwise direction and 0.6Lz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.6 L_{z}$$\end{document} in the spanwise direction. These features are similar to those found in the logarithmic and outer regions of laboratory-scale boundary layers by direct numerical simulation and experiments conducted at low to moderate Reynolds numbers. The three-dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the cross-section perpendicular to the streamwise direction. These results are in agreement with recent observations in the atmospheric surface layer.
引用
收藏
页码:397 / 416
页数:19
相关论文
共 213 条
[1]  
Abe H(2004)Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to J Fluid Eng-T ASME 126 835-843
[2]  
Kawamura H(2012)A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions J Turbul 13 N23-2132
[3]  
Choi H(2007)Hairpin vortex organization in wall turbulence Phys Fluids 19 041301-286
[4]  
Abkar M(1999)Surface length scales and shear stress: Implications for land–atmosphere interaction over complex terrain Water Resour Res 35 2121-1484
[5]  
Porté-Agel F(2012)Large-eddy simulation of atmospheric boundary-layer flow over fluvial-like landscapes using a dynamic roughness model Boundary-Layer Meteorol 144 263-175
[6]  
Adrian RJ(1994)Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes Q J R Meteorol Soc 120 1457-681
[7]  
Albertson JD(1996)An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations Boundary-Layer Meteorol 79 131-2091
[8]  
Parlange MB(2007)Large- and very-large-scale motions in channel and boundary-layer flows Philos Trans R Soc A 365 665-20648
[9]  
Anderson W(2006)Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach J Atmos Sci 63 2074-15
[10]  
Passalacqua P(1995)Quasi-coherent structures in the marine atmospheric surface layer J Geophys Res 100 20635-410