Parabolic flow on metric measure spaces

被引:0
作者
Przemysław Górka
Anna Kurek
Enrique Lazarte
Humberto Prado
机构
[1] Warsaw University of Technology,Department of Mathematics and Information Sciences
[2] Universidad Nacional de Salta,Departamento de Matemática
[3] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
来源
Semigroup Forum | 2014年 / 88卷
关键词
Metric measure space; Heat kernel; Parabolic equation; Regularity theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present parabolic equations on metric measure spaces. We prove existence and uniqueness of solutions. Under some assumptions the existence of global in time solution is proved. Moreover, regularity and qualitative property of the solutions are shown.
引用
收藏
页码:129 / 144
页数:15
相关论文
共 18 条
  • [1] Falconer K.J.(2001)Nonlinear diffusion equations on unbounded fractal domains J. Math. Anal. Appl. 256 604-606
  • [2] Hu J.(2012)Inhomogeneous parabolic equations on unbounded metric measure spaces Proc. R. Soc. Edinb. Sect. A 142 1003-1025
  • [3] Falconer K.J.(2009)Harmonic functions on metric measure spaces: convergence and compactness Potential Anal. 31 203-214
  • [4] Hu J.(2009)Campanato theorem on metric measure spaces Ann. Acad. Sci. Fenn. 34 523-528
  • [5] Sun Y.(2003)Heat kernels on metric measure spaces and applications to semilinear elliptic equations Trans. Am. Math. Soc. 355 2065-2095
  • [6] Gaczkowski M.(2006)Jump processes and nonlinear fractional heat equations on metric measure Math. Nachr. 279 150-163
  • [7] Górka P.(1996)Sobolev spaces on an arbitrary metric space Potential Anal. 5 403-415
  • [8] Górka P.(1999)Definitions of Sobolev classes on metric spaces Ann. Inst. Fourier (Grenoble) 49 1903-1924
  • [9] Grigor’yan A.(2011)Global heat kernel estimates for symmetric jump processes Trans. Am. Math. Soc. 363 5021-5055
  • [10] Xu J.(undefined)undefined undefined undefined undefined-undefined