An efficient resource allocation of IoT requests in hybrid fog–cloud environment

被引:0
|
作者
Mahboubeh Afzali
Amin Mohammad Vali Samani
Hamid Reza Naji
机构
[1] Graduate University of Advanced Technology,Department of Electrical and Computer Engineering
[2] K. N. Toosi University of Technology,Faculty of Computer Engineering
[3] Graduate University of Advanced Technology,Department of Electrical and Computer Engineering
来源
关键词
IoT; Hybrid fog–cloud computing; Latency; Load balancing; Resource allocation; Optimization; IBPSO algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The Internet of things (IoT) paradigm has emerged to connect the number of devices using the Internet resulting in the deployment of smart cities. Cloud computing has been applied to execute the computational demands of IoT devices by collecting data from the physical environment of a smart city. However, cloud computing could not become a proper choice for latency-sensitive applications because of remote cloud data centers. To overcome this challenge, fog computing has emerged to deal with the inherent limitations of cloud computing environment through provision of computing to the edge of a network. However, resource allocation of IoT service requests among fog nodes is considered as an NP-hard problem, which should be addressed in the fog computing environment. In this paper, an efficient optimization approach based on improved binary particle swarm optimization (IBPSO) algorithm has been provided for resource allocation of IoT requests in the hybrid fog–cloud computing environment. The proposed method aims to reduce the service request latency with ensuring load balancing among fog nodes. The performance of the proposed algorithm has been compared by the binary genetic algorithm (BGA), binary particle swarm optimization (BPSO), binary grey wolf optimization (BGWO)-based, and ranked-based resource allocation methods in terms of latency, missed deadline requests, run time, and load balancing. The results show that the proposed algorithm outperformed with an average of around 11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$11\%$$\end{document}, 22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22\%$$\end{document}, 21%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$21\%$$\end{document}, and 22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22\%$$\end{document} percent in the IBPSO-based method rather than the BGA-based, BPSO-based, BGWO-based, and ranked-based resource allocation methods, respectively. Moreover, the resource allocation based on IBPSO achieved around 11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$11\%$$\end{document}, 28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$28\%$$\end{document}, 27%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$27\%$$\end{document}, and 25%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$25\%$$\end{document} decline in total latency compared to the BGA-based, BPSO-based, BGWO-based, and ranked-based resource allocation methods. Furthermore, the run time of the proposed algorithm could enhance by 45%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45\%$$\end{document}, 9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9\%$$\end{document}, and 8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\%$$\end{document} compared to the BGA-based, BPSO-based, and BGWO-based resource allocation methods.
引用
收藏
页码:4600 / 4624
页数:24
相关论文
共 50 条
  • [1] An efficient resource allocation of IoT requests in hybrid fog-cloud environment
    Afzali, Mahboubeh
    Samani, Amin Mohammad Vali
    Naji, Hamid Reza
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (04): : 4600 - 4624
  • [2] Towards Energy and Time Efficient Resource Allocation in IoT-Fog-Cloud Environment
    Sun, Huaiying
    Yu, Huiqun
    Fan, Guisheng
    SERVICE-ORIENTED COMPUTING, ICSOC 2018, 2019, 11434 : 387 - 393
  • [3] Efficient resource allocation for consumers' power requests in cloud-fog-based system
    Bukhsh, Rasool
    Javaid, Nadeem
    Javaid, Sakeena
    Ilahi, Manzoor
    Fatima, Itrat
    INTERNATIONAL JOURNAL OF WEB AND GRID SERVICES, 2019, 15 (02) : 159 - 190
  • [4] An efficient meta-heuristic resource allocation with load balancing in IoT-Fog-cloud computing environment
    Yakubu I.Z.
    Murali M.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2981 - 2992
  • [5] Resource Allocation for Efficient IOT Application in Fog Computing
    Verma, Shubham
    Gupta, Amit
    Kumar, Sushil
    Srivastava, Vivek
    Tripathi, Bipin Kumar
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2020, 5 (06) : 1312 - 1323
  • [6] An Efficient Resource Allocation Scheme With Optimal Node Placement in IoT-Fog-Cloud Architecture
    Manogaran, Gunasekaran
    Rawal, Bharat S.
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25106 - 25113
  • [7] Resource Allocation and Scheduling of Real-Time Workflow Applications in an IoT-Fog-Cloud Environment
    Stavrinides, Georgios L.
    Karatza, Helen D.
    2022 SEVENTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2022, : 86 - 93
  • [8] An Efficient IoT-Fog-Cloud Resource Allocation Framework Based on Two-Stage Approach
    Yakubu, Ismail Zahraddeen
    Murali, M.
    IEEE ACCESS, 2024, 12 : 75384 - 75395
  • [9] Energy and time efficient task offloading and resource allocation on the generic IoT-fog-cloud architecture
    Sun, Huaiying
    Yu, Huiqun
    Fan, Guisheng
    Chen, Liqiong
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (02) : 548 - 563
  • [10] Energy and time efficient task offloading and resource allocation on the generic IoT-fog-cloud architecture
    Huaiying Sun
    Huiqun Yu
    Guisheng Fan
    Liqiong Chen
    Peer-to-Peer Networking and Applications, 2020, 13 : 548 - 563