Characterization of optimality in classes of “truncatable” stopping rules

被引:0
作者
Andrey Novikov
机构
[1] UAM-Iztapalapa,Departamento de Matemáticas
关键词
Discrete-time stochastic process; Optimal stopping; Statistical model; Characterization of optimality; 62L10; 62L15; 62C10;
D O I
10.1007/s40590-014-0028-4
中图分类号
学科分类号
摘要
Let X1,X2,…,Xn,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1,X_2,\ldots ,X_n,\ldots $$\end{document} be a discrete-time stochastic process. The following optimal stopping problem is considered. We observe X1,X2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1,X_2,\ldots $$\end{document} on the one-by-one basis getting successively the data x1,x2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1,x_2,\ldots $$\end{document}. At each stage n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, n=1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,2,\ldots $$\end{document}, after the data x1,…,xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1,\ldots ,x_n$$\end{document} have been observed, we may stop, and if we stop, we gain gn(x1,…,xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n(x_1,\ldots ,x_n)$$\end{document}. In this article, we characterize the structure of all optimal (randomized) stopping times τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} that maximize the average gain value G(τ)=Egτ(X1,…,Xτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(\tau )=E g_\tau (X_1,\ldots , X_\tau )$$\end{document} in some natural classes of stopping times τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} we call truncatable: τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is called truncatable if G(τ∧N)→G(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(\tau \wedge N)\rightarrow G(\tau )$$\end{document} as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document}. It is shown that under some additional conditions on the structure of gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n$$\end{document} (suitable for statistical applications) every finite (with probability 1) stopping time is truncatable.
引用
收藏
页码:99 / 117
页数:18
相关论文
共 21 条
  • [1] Characterization of optimality in classes of "truncatable" stopping rules
    Novikov, Andrey
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (01): : 99 - 117
  • [2] Empirical Analysis of the Optimality of RSRE-based Stopping Rules for Monitored Reconstruction
    Bulatov, Konstantin
    Mukovozov, Arseniy
    Arlazarov, Vladimir V.
    THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [3] OPTIMALITY OF THRESHOLD STOPPING TIMES FOR DIFFUSION PROCESSES
    Arkin, V., I
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2020, 65 (03) : 341 - 358
  • [4] LOCAL OPTIMALITY CONDITIONS FOR OPTIMAL STOPPING.
    Makowski, Armand M.
    Stochastics, 1982, 7 (1-2): : 91 - 132
  • [5] Randomised rules for stopping problems
    Hobson, David
    Zeng, Matthew
    JOURNAL OF APPLIED PROBABILITY, 2020, 57 (03) : 981 - 1004
  • [6] Maximizing expected value with two stage stopping rules
    Assaf, David
    Goldstein, Larry
    Samuel-Cahn, Ester
    RANDOM WALK, SEQUENTIAL ANALYSIS AND RELATED TOPICS: A FESTSCHRIFT IN HONOR OF YUAN-SHIH CHOW, 2006, : 3 - +
  • [7] Optimal Stopping Rules of Discrete-Time Callable Financial Commodities with Two Stopping Boundaries
    Sato, Kimitoshi
    Sawaki, Katsushige
    Wakinaga, Hiroyuki
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 215 - +
  • [8] Prophet inequalities for optimal stopping rules with probabilistic recall
    Assaf, D
    Samuel-Cahn, E
    BERNOULLI, 2002, 8 (01) : 39 - 52
  • [9] Logconcave reward functions and optimal stopping rules of threshold form
    Hsiau, Shoou-Ren
    Lin, Yi-Shen
    Yao, Yi-Ching
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [10] STOPPING RULES AND ESTIMATION FOR RECAPTURE DEBUGGING WITH UNEQUAL FAILURE RATES
    CHAO, A
    MA, MC
    YANG, MCK
    BIOMETRIKA, 1993, 80 (01) : 193 - 201