Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials

被引:0
作者
Feng Qi
Bai-Ni Guo
机构
[1] Henan Polytechnic University,Institute of Mathematics
[2] Inner Mongolia University for Nationalities,College of Mathematics
[3] Tianjin Polytechnic University,Department of Mathematics, College of Science
[4] Henan Polytechnic University,School of Mathematics and Informatics
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Explicit formula; special value; Bell polynomial of the second kind; Euler number; Euler polynomial; double sum; weighted Stirling number; property; Primary 11B68; Secondary 11B83; 12E10; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, the authors establish by two approaches several explicit formulas for special values of the Bell polynomials of the second kind, derive explicit formulas for the Euler numbers and polynomials in terms of double sums and the weighted Stirling numbers, and find a property for special values of the Bell polynomials of the second kind.
引用
收藏
相关论文
共 20 条
[1]  
Broder AZ(1984)The Discrete Math. 49 241-259
[2]  
Carlitz L(1980)-Stirling numbers Fibonacci Quart. 18 147-162
[3]  
Carlitz L(1980)Weighted Stirling numbers of the first and second kind. I Fibonacci Quart. 18 242-257
[4]  
Guo B-N(2016)Weighted Stirling numbers of the first and second kind. II Rocky Mountain J. Math. 46 1919-1923
[5]  
Mező I(1994)An explicit formula for the Bernoulli polynomials in terms of the Fibonacci Quart. 32 316-328
[6]  
Qi F(2014)-Stirling numbers of the second kind J. Comput. Appl. Math. 272 251-257
[7]  
Howard FT(2015)Congruences and recurrences for Bernoulli numbers of higher order Appl. Math. Comput. 268 844-858
[8]  
Guo B-N(2015)Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind Appl. Math. Comput. 258 597-607
[9]  
Qi F(2014)Derivatives of tangent function and tangent numbers Filomat 28 319-327
[10]  
Qi F(2015)Explicit expressions for a family of the Bell polynomials and applications J. Anal. Number Theory 3 27-30