On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization

被引:0
作者
M. J. Cánovas
F. J. Gómez-Senent
J. Parra
机构
[1] Miguel Hernández University of Elche,Operations Research Center
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Strong Lipschitz stability; Metric regularity; Lipschitz modulus; Optimal set mapping; Linear semi-infinite programming; 90C34; 49J53; 90C31; 90C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to quantify the Lipschitzian behavior of the optimal solutions set in linear optimization under perturbations of the objective function and the right hand side of the constraints (inequalities). In our model, the set indexing the constraints is assumed to be a compact metric space and all coefficients depend continuously on the index. The paper provides a lower bound on the Lipschitz modulus of the optimal set mapping (also called argmin mapping), which, under our assumptions, is single-valued and Lipschitz continuous near the nominal parameter. This lower bound turns out to be the exact modulus in ordinary linear programming, as well as in the semi-infinite case under some additional hypothesis which always holds for dimensions n ⩽ 3. The expression for the lower bound (or exact modulus) only depends on the nominal problem’s coefficients, providing an operative formula from the practical side, specially in the particular framework of ordinary linear programming, where it constitutes the sharp Lipschitz constant. In the semi-infinite case, the problem of whether or not the lower bound equals the exact modulus for n > 3 under weaker hypotheses (or none) remains as an open problem.
引用
收藏
页码:511 / 538
页数:27
相关论文
共 50 条
  • [41] Relaxed cutting plane method for solving linear semi-infinite programming problems
    Wu, SY
    Fang, SC
    Lin, CJ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 99 (03) : 759 - 779
  • [42] PRIMAL-DUAL PARTITIONS IN LINEAR SEMI-INFINITE PROGRAMMING WITH BOUNDED COEFFICIENTS
    Barragan, Abraham B.
    Hernandez, Lidia A.
    Iusem, Alfredo N.
    Todorov, Maxim, I
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (02): : 207 - 223
  • [43] Relaxed Cutting Plane Method for Solving Linear Semi-Infinite Programming Problems
    S. Y. Wu
    S. C. Fang
    C. J. Lin
    Journal of Optimization Theory and Applications, 1998, 99 : 759 - 779
  • [44] VARIATIONAL ANALYSIS IN SEMI-INFINITE AND INFINITE PROGRAMMING, I: STABILITY OF LINEAR INEQUALITY SYSTEMS OF FEASIBLE SOLUTIONS
    Canovas, M. J.
    Lopez, M. A.
    Mordukhovich, B. S.
    Parra, J.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1504 - 1526
  • [45] STABILITY ANALYSIS FOR GENERALIZED SEMI-INFINITE OPTIMIZATION PROBLEMS UNDER FUNCTIONAL PERTURBATIONS
    Fan, Xiaodong
    Qin, Tian
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (03) : 1221 - 1233
  • [46] Lipschitz Modulus of the Optimal Value in Linear Programming
    Jesus Gisbert, Maria
    Josefa Canovas, Maria
    Parra, Juan
    Javier Toledo, Fco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (01) : 133 - 152
  • [47] ROBUST SOLUTIONS OF MULTIOBJECTIVE LINEAR SEMI-INFINITE PROGRAMS UNDER CONSTRAINT DATA UNCERTAINTY
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Vicente-Perez, J.
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1402 - 1419
  • [48] Lipschitz Modulus of the Optimal Value in Linear Programming
    María Jesús Gisbert
    María Josefa Cánovas
    Juan Parra
    Fco. Javier Toledo
    Journal of Optimization Theory and Applications, 2019, 182 : 133 - 152
  • [49] SUBDIFFERENTIALS OF MARGINAL FUNCTIONS IN SEMI-INFINITE PROGRAMMING
    Thai Doan Chuong
    Nguyen Quang Huy
    Yao, Jen-Chih
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1462 - 1477
  • [50] Metric regularity of semi-infinite constraint systems
    M.J. Cánovas
    A.L. Dontchev
    M.A. López
    J. Parra
    Mathematical Programming, 2005, 104 : 329 - 346