On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization

被引:0
|
作者
M. J. Cánovas
F. J. Gómez-Senent
J. Parra
机构
[1] Miguel Hernández University of Elche,Operations Research Center
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Strong Lipschitz stability; Metric regularity; Lipschitz modulus; Optimal set mapping; Linear semi-infinite programming; 90C34; 49J53; 90C31; 90C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to quantify the Lipschitzian behavior of the optimal solutions set in linear optimization under perturbations of the objective function and the right hand side of the constraints (inequalities). In our model, the set indexing the constraints is assumed to be a compact metric space and all coefficients depend continuously on the index. The paper provides a lower bound on the Lipschitz modulus of the optimal set mapping (also called argmin mapping), which, under our assumptions, is single-valued and Lipschitz continuous near the nominal parameter. This lower bound turns out to be the exact modulus in ordinary linear programming, as well as in the semi-infinite case under some additional hypothesis which always holds for dimensions n ⩽ 3. The expression for the lower bound (or exact modulus) only depends on the nominal problem’s coefficients, providing an operative formula from the practical side, specially in the particular framework of ordinary linear programming, where it constitutes the sharp Lipschitz constant. In the semi-infinite case, the problem of whether or not the lower bound equals the exact modulus for n > 3 under weaker hypotheses (or none) remains as an open problem.
引用
收藏
页码:511 / 538
页数:27
相关论文
共 50 条
  • [21] NEW CONSTRAINT QUALIFICATION AND OPTIMALITY FOR LINEAR SEMI-INFINITE PROGRAMMING
    Liu, Yanqun
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (02): : 223 - 232
  • [22] SEMIDEFINITE PROGRAMMING RELAXATIONS FOR LINEAR SEMI-INFINITE POLYNOMIAL PROGRAMMING
    Guo, Feng
    Sun, Xiaoxia
    PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (03): : 395 - 418
  • [23] Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions
    Goberna, M. A.
    Terlaky, T.
    Todorov, M. I.
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 14 - 26
  • [24] On Calmness of the Argmin Mapping in Parametric Optimization Problems
    Diethard Klatte
    Bernd Kummer
    Journal of Optimization Theory and Applications, 2015, 165 : 708 - 719
  • [25] Understanding linear semi-infinite programming via linear programming over cones
    Zhang, Qinghong
    OPTIMIZATION, 2010, 59 (08) : 1247 - 1258
  • [26] Density of stable convex semi-infinite vector optimization problems
    Fan, Xiaodong
    Cheng, Caozong
    Wang, Haijun
    OPERATIONS RESEARCH LETTERS, 2012, 40 (02) : 140 - 143
  • [27] NECESSARY OPTIMALITY CONDITION AND STABILITY IN NONLINEAR SEMI-INFINITE OPTIMIZATION
    Huy, N. Q.
    Wong, M. M.
    Yao, J. -C.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (04) : 765 - 785
  • [28] LIPSCHITZ MODULUS OF FULLY PERTURBED LINEAR PROGRAMS
    Canovas, M. J.
    Parra, J.
    Toledo, F. J.
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (03): : 381 - 398
  • [29] Solving Strategies and Well-Posedness in Linear Semi-Infinite Programming
    M.J. Cánovas
    M.A. López
    J. Parra
    M.I. Todorov
    Annals of Operations Research, 2001, 101 : 171 - 190
  • [30] On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients
    M. A. Goberna
    G. A. Lancho
    M. I. Todorov
    V. N. Vera de Serio
    Applied Mathematics & Optimization, 2011, 63 : 239 - 256