Adaptive resizer-based transfer learning framework for the diagnosis of breast cancer using histopathology images

被引:0
|
作者
Okan Duzyel
Mehmet Sergen Catal
Ceyhun Efe Kayan
Arda Sevinc
Abdurrahman Gumus
机构
[1] Izmir Institute of Technology,Department of Electrical and Electronics Engineering
来源
关键词
Breast cancer; Histopathology images; Computer-assisted prediction; Deep neural networks; Adaptive resizer;
D O I
暂无
中图分类号
学科分类号
摘要
Breast cancer is a major global health concern, and early and accurate diagnosis is crucial for effective treatment. Recent advancements in computer-assisted prediction models have facilitated diagnosis and prognosis using high-resolution histopathology images, which provide detailed information on cancerous tissue. However, these high-resolution images often require resizing, leading to potential data loss. In this study, we demonstrate the effect of a learnable adaptive resizer for breast cancer classification using the BreakHis dataset. Our approach incorporates the adaptive resizer with various convolutional neural network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2, DenseNet121, DenseNet201, and EfficientNetB0. Despite producing visually less appealing images, the learnable resizer effectively improves classification performance. DenseNet201, when jointly trained with the adaptive resizer, achieves the highest accuracy of 98.96% for input images of 448 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 448 resolution. Our experimental results demonstrate that the adaptive resizer performs better at a magnification factor of 40×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} compared to higher magnifications. While its effectiveness becomes less pronounced as image resolution increases to 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, the adaptive resizer still outperforms bilinear interpolation. In conclusion, this study highlights the potential of adaptive resizers in enhancing performance for medical image classification. By outperforming traditional image resizing methods, our work contributes to the advancement of deep neural networks in the field of breast cancer diagnostics.
引用
收藏
页码:4561 / 4570
页数:9
相关论文
共 50 条
  • [41] Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis
    S. R. Sannasi Chakravarthy
    N. Bharanidharan
    Harikumar Rajaguru
    Multimedia Tools and Applications, 2023, 82 : 47585 - 47609
  • [42] Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis
    Chakravarthy, S. R. Sannasi
    Bharanidharan, N.
    Rajaguru, Harikumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 47585 - 47609
  • [43] Artificial intelligence and feature based transfer learning framework for diagnosis of chest diseases using radiology images
    Al-Otaibi, Shaha
    Rehman, Amjad
    Mujahid, Muhammad
    Alotaibi, Sarah
    Saba, Tanzila
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [44] A Comprehensive Review of Computer-Aided Models for Breast Cancer Diagnosis Using Histopathology Images
    Labrada, Alberto
    Barkana, Buket D.
    BIOENGINEERING-BASEL, 2023, 10 (11):
  • [45] A GUI Based Application for Breast Cancer Diagnosis from Histopathology Images Using a Sequential Convolutional Neural Network Model
    Evangeline, I. Keren
    Kirubha, S. P. Angeline
    Precious, J. Glory
    Pazhanivel, N.
    IETE JOURNAL OF RESEARCH, 2025, 71 (02) : 457 - 464
  • [46] Breast cancer images Classification using a new transfer learning technique
    Mukhlif A.A.
    Al-Khateeb B.
    Mohammed M.A.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 167 - 180
  • [47] Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning
    Wakili, Musa Adamu
    Shehu, Harisu Abdullahi
    Sharif, Md. Haidar
    Sharif, Md. Haris Uddin
    Umar, Abubakar
    Kusetogullari, Huseyin
    Ince, Ibrahim Furkan
    Uyaver, Sahin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [48] Developing a weakly supervised deep learning framework for breast cancer diagnosis with HR status based on mammography images
    Zhang, Mengyan
    Wang, Cong
    Cai, Li
    Zhao, Jiyun
    Xu, Ye
    Xing, Jiacheng
    Sun, Jianghong
    Zhang, Yan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 22 : 17 - 26
  • [49] Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis
    Khairi, Siti Shaliza Mohd
    Abu Bakar, Mohd Aftar
    Alias, Mohd Almie
    Abu Bakar, Sakhinah
    Liong, Choong-Yeun
    Rosli, Nurwahyuna
    Farid, Mohsen
    HEALTHCARE, 2022, 10 (01)
  • [50] Deep learning approaches for breast cancer detection in histopathology images: A review
    Priya, Lakshmi C., V
    Biju, V. G.
    Vinod, B. R.
    Ramachandran, Sivakumar
    CANCER BIOMARKERS, 2024, 40 (01) : 1 - 25