Adaptive resizer-based transfer learning framework for the diagnosis of breast cancer using histopathology images

被引:0
|
作者
Okan Duzyel
Mehmet Sergen Catal
Ceyhun Efe Kayan
Arda Sevinc
Abdurrahman Gumus
机构
[1] Izmir Institute of Technology,Department of Electrical and Electronics Engineering
来源
关键词
Breast cancer; Histopathology images; Computer-assisted prediction; Deep neural networks; Adaptive resizer;
D O I
暂无
中图分类号
学科分类号
摘要
Breast cancer is a major global health concern, and early and accurate diagnosis is crucial for effective treatment. Recent advancements in computer-assisted prediction models have facilitated diagnosis and prognosis using high-resolution histopathology images, which provide detailed information on cancerous tissue. However, these high-resolution images often require resizing, leading to potential data loss. In this study, we demonstrate the effect of a learnable adaptive resizer for breast cancer classification using the BreakHis dataset. Our approach incorporates the adaptive resizer with various convolutional neural network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2, DenseNet121, DenseNet201, and EfficientNetB0. Despite producing visually less appealing images, the learnable resizer effectively improves classification performance. DenseNet201, when jointly trained with the adaptive resizer, achieves the highest accuracy of 98.96% for input images of 448 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 448 resolution. Our experimental results demonstrate that the adaptive resizer performs better at a magnification factor of 40×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} compared to higher magnifications. While its effectiveness becomes less pronounced as image resolution increases to 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, the adaptive resizer still outperforms bilinear interpolation. In conclusion, this study highlights the potential of adaptive resizers in enhancing performance for medical image classification. By outperforming traditional image resizing methods, our work contributes to the advancement of deep neural networks in the field of breast cancer diagnostics.
引用
收藏
页码:4561 / 4570
页数:9
相关论文
共 50 条
  • [31] A new framework for early diagnosis of breast cancer using mammography images
    Samet Aymaz
    Neural Computing and Applications, 2024, 36 : 1665 - 1680
  • [32] Identifying Tumor in Whole-Slide images of Breast Cancer Using Transfer Learning and Adaptive Sampling
    Wu, Chenchen
    Ruan, Jun
    Ye, Guanglu
    Zhou, Jingfan
    He, Simin
    Wang, Jianlian
    Zhu, Zhikui
    Yue, Junqiu
    Zhang, Yanggeling
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 167 - 172
  • [33] Application of Deep Learning in Histopathology Images of Breast Cancer: A Review
    Zhao, Yue
    Zhang, Jie
    Hu, Dayu
    Qu, Hui
    Tian, Ye
    Cui, Xiaoyu
    MICROMACHINES, 2022, 13 (12)
  • [34] Classification of breast cancer histopathology images using a modified supervised contrastive learning method
    Sani, Matina Mahdizadeh
    Royat, Ali
    Baghshah, Mahdieh Soleymani
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, : 721 - 731
  • [35] Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence
    K. S. Wang
    G. Yu
    C. Xu
    X. H. Meng
    J. Zhou
    C. Zheng
    Z. Deng
    L. Shang
    R. Liu
    S. Su
    X. Zhou
    Q. Li
    J. Li
    J. Wang
    K. Ma
    J. Qi
    Z. Hu
    P. Tang
    J. Deng
    X. Qiu
    B. Y. Li
    W. D. Shen
    R. P. Quan
    J. T. Yang
    L. Y. Huang
    Y. Xiao
    Z. C. Yang
    Z. Li
    S. C. Wang
    H. Ren
    C. Liang
    W. Guo
    Y. Li
    H. Xiao
    Y. Gu
    J. P. Yun
    D. Huang
    Z. Song
    X. Fan
    L. Chen
    X. Yan
    Z. Li
    Z. C. Huang
    J. Huang
    J. Luttrell
    C. Y. Zhang
    W. Zhou
    K. Zhang
    C. Yi
    C. Wu
    BMC Medicine, 19
  • [36] Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence
    Wang, K. S.
    Yu, G.
    Xu, C.
    Meng, X. H.
    Zhou, J.
    Zheng, C.
    Deng, Z.
    Shang, L.
    Liu, R.
    Su, S.
    Zhou, X.
    Li, Q.
    Li, J.
    Wang, J.
    Ma, K.
    Qi, J.
    Hu, Z.
    Tang, P.
    Deng, J.
    Qiu, X.
    Li, B. Y.
    Shen, W. D.
    Quan, R. P.
    Yang, J. T.
    Huang, L. Y.
    Xiao, Y.
    Yang, Z. C.
    Li, Z.
    Wang, S. C.
    Ren, H.
    Liang, C.
    Guo, W.
    Li, Y.
    Xiao, H.
    Gu, Y.
    Yun, J. P.
    Huang, D.
    Song, Z.
    Fan, X.
    Chen, L.
    Yan, X.
    Li, Z.
    Huang, Z. C.
    Huang, J.
    Luttrell, J.
    Zhang, C. Y.
    Zhou, W.
    Zhang, K.
    Yi, C.
    Wu, C.
    BMC MEDICINE, 2021, 19 (01)
  • [37] Prediction of BRCA Gene Mutation in Breast Cancer Based on Deep Learning and Histopathology Images
    Wang, Xiaoxiao
    Zou, Chong
    Zhang, Yi
    Li, Xiuqing
    Wang, Chenxi
    Ke, Fei
    Chen, Jie
    Wang, Wei
    Wang, Dian
    Xu, Xinyu
    Xie, Ling
    Zhang, Yifen
    FRONTIERS IN GENETICS, 2021, 12
  • [38] Improved SegMitos framework for mitosis detection in breast cancer histopathology images
    Sebai, Meriem
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 102 - 106
  • [39] BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images
    Su, Ziyu
    Niazi, Muhammad Khalid Khan
    Tavolara, Thomas E.
    Niu, Shuo
    Tozbikian, Gary H.
    Wesolowski, Robert
    Gurcan, Metin N.
    PLOS ONE, 2023, 18 (04):
  • [40] An interpretable framework for gastric cancer classification using multi-channel attention mechanisms and transfer learning approach on histopathology images
    Muhammad Zubair
    Muhammad Owais
    Taimur Hassan
    Malika Bendechache
    Muzammil Hussain
    Irfan Hussain
    Naoufel Werghi
    Scientific Reports, 15 (1)