Adaptive resizer-based transfer learning framework for the diagnosis of breast cancer using histopathology images

被引:0
|
作者
Okan Duzyel
Mehmet Sergen Catal
Ceyhun Efe Kayan
Arda Sevinc
Abdurrahman Gumus
机构
[1] Izmir Institute of Technology,Department of Electrical and Electronics Engineering
来源
关键词
Breast cancer; Histopathology images; Computer-assisted prediction; Deep neural networks; Adaptive resizer;
D O I
暂无
中图分类号
学科分类号
摘要
Breast cancer is a major global health concern, and early and accurate diagnosis is crucial for effective treatment. Recent advancements in computer-assisted prediction models have facilitated diagnosis and prognosis using high-resolution histopathology images, which provide detailed information on cancerous tissue. However, these high-resolution images often require resizing, leading to potential data loss. In this study, we demonstrate the effect of a learnable adaptive resizer for breast cancer classification using the BreakHis dataset. Our approach incorporates the adaptive resizer with various convolutional neural network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2, DenseNet121, DenseNet201, and EfficientNetB0. Despite producing visually less appealing images, the learnable resizer effectively improves classification performance. DenseNet201, when jointly trained with the adaptive resizer, achieves the highest accuracy of 98.96% for input images of 448 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 448 resolution. Our experimental results demonstrate that the adaptive resizer performs better at a magnification factor of 40×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} compared to higher magnifications. While its effectiveness becomes less pronounced as image resolution increases to 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, the adaptive resizer still outperforms bilinear interpolation. In conclusion, this study highlights the potential of adaptive resizers in enhancing performance for medical image classification. By outperforming traditional image resizing methods, our work contributes to the advancement of deep neural networks in the field of breast cancer diagnostics.
引用
收藏
页码:4561 / 4570
页数:9
相关论文
共 50 条
  • [21] Selecting the optimal transfer learning model for precise breast cancer diagnosis utilizing pre-trained deep learning models and histopathology images
    Aswathy Ravikumar
    Harini Sriraman
    B. Saleena
    B. Prakash
    Health and Technology, 2023, 13 : 721 - 745
  • [22] Diagnosis of breast cancer based on modern mammography using hybrid transfer learning
    Aditya Khamparia
    Subrato Bharati
    Prajoy Podder
    Deepak Gupta
    Ashish Khanna
    Thai Kim Phung
    Dang N. H. Thanh
    Multidimensional Systems and Signal Processing, 2021, 32 : 747 - 765
  • [23] Diagnosis of breast cancer based on modern mammography using hybrid transfer learning
    Khamparia, Aditya
    Bharati, Subrato
    Podder, Prajoy
    Gupta, Deepak
    Khanna, Ashish
    Phung, Thai Kim
    Thanh, Dang N. H.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2021, 32 (02) : 747 - 765
  • [24] BreastRegNet: A Deep Learning Framework for Registration of Breast Faxitron and Histopathology Images
    Golestani, Negar
    Wang, Aihui
    Bean, Gregory R.
    Rusu, Mirabela
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2023 WORKSHOPS, 2023, 14394 : 182 - 192
  • [25] Breast cancer diagnosis from histopathology images using deep neural network and XGBoost
    Maleki, Alireza
    Raahemi, Mohammad
    Nasiri, Hamid
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [26] A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
    Khan, SanaUllah
    Islam, Naveed
    Jan, Zahoor
    Din, Ikram Ud
    Rodrigues, Joel J. P. C.
    PATTERN RECOGNITION LETTERS, 2019, 125 : 1 - 6
  • [27] Breast Cancer Classification in Ultrasound Images using Transfer Learning
    Hijab, Ahmed
    Rushdi, Muhammad A.
    Gomaa, Mohammed M.
    Eldeib, Ayman
    2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, : 64 - 67
  • [28] Classification of Breast Cancer Histology Images Using Transfer Learning
    Vesal, Sulaiman
    Ravikumar, Nishant
    Davari, AmirAbbas
    Ellmann, Stephan
    Maier, Andreas
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 812 - 819
  • [29] Classification of Breast Cancer Histology Images Using Transfer Learning
    Ahmad, Hafiz Mughees
    Ghuffar, Sajid
    Khurshid, Khurram
    PROCEEDINGS OF 2019 16TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2019, : 328 - 332
  • [30] A new framework for early diagnosis of breast cancer using mammography images
    Aymaz, Samet
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (04): : 1665 - 1680