Adaptive resizer-based transfer learning framework for the diagnosis of breast cancer using histopathology images

被引:0
|
作者
Okan Duzyel
Mehmet Sergen Catal
Ceyhun Efe Kayan
Arda Sevinc
Abdurrahman Gumus
机构
[1] Izmir Institute of Technology,Department of Electrical and Electronics Engineering
来源
关键词
Breast cancer; Histopathology images; Computer-assisted prediction; Deep neural networks; Adaptive resizer;
D O I
暂无
中图分类号
学科分类号
摘要
Breast cancer is a major global health concern, and early and accurate diagnosis is crucial for effective treatment. Recent advancements in computer-assisted prediction models have facilitated diagnosis and prognosis using high-resolution histopathology images, which provide detailed information on cancerous tissue. However, these high-resolution images often require resizing, leading to potential data loss. In this study, we demonstrate the effect of a learnable adaptive resizer for breast cancer classification using the BreakHis dataset. Our approach incorporates the adaptive resizer with various convolutional neural network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2, DenseNet121, DenseNet201, and EfficientNetB0. Despite producing visually less appealing images, the learnable resizer effectively improves classification performance. DenseNet201, when jointly trained with the adaptive resizer, achieves the highest accuracy of 98.96% for input images of 448 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 448 resolution. Our experimental results demonstrate that the adaptive resizer performs better at a magnification factor of 40×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} compared to higher magnifications. While its effectiveness becomes less pronounced as image resolution increases to 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, the adaptive resizer still outperforms bilinear interpolation. In conclusion, this study highlights the potential of adaptive resizers in enhancing performance for medical image classification. By outperforming traditional image resizing methods, our work contributes to the advancement of deep neural networks in the field of breast cancer diagnostics.
引用
收藏
页码:4561 / 4570
页数:9
相关论文
共 50 条
  • [1] Adaptive resizer-based transfer learning framework for the diagnosis of breast cancer using histopathology images
    Duzyel, Okan
    Catal, Mehmet Sergen
    Kayan, Ceyhun Efe
    Sevinc, Arda
    Gumus, Abdurrahman
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 4561 - 4570
  • [2] Oral cancer detection using transfer learning-based framework from histopathology images
    Redie, Dawit Kiros
    Bilgaiyan, Saurabh
    Sagnika, Santwana
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [3] Direct Cellularity Estimation on Breast Cancer Histopathology Images Using Transfer Learning
    Pei, Ziang
    Cao, Shuangliang
    Lu, Lijun
    Chen, Wufan
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
  • [4] Effectiveness Analysis of Deep Learning Methods for Breast Cancer Diagnosis Based on Histopathology Images
    Korkmaz, Merve
    Kaplan, Kaplan
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [5] A Framework of Deep Learning and Selection-Based Breast Cancer Detection from Histopathology Images
    Umer M.J.
    Sharif M.
    Alhaisoni M.
    Tariq U.
    Kim Y.J.
    Chang B.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1001 - 1016
  • [6] A Method for Classifying Medical Images using Transfer Learning: A Pilot Study on Histopathology of Breast Cancer
    Chang, Jongwon
    Yu, Jisang
    Han, Taehwa
    Chang, Hyuk-jae
    Park, Eunjeong
    2017 IEEE 19TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2017,
  • [7] Breast Cancer Diagnosis from Histopathology Images using Supervised Algorithms
    Labrada, Alberto
    Barkana, Buket D.
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 102 - 107
  • [8] IVNet: Transfer Learning Based Diagnosis of Breast Cancer Grading Using Histopathological Images of Infected Cells
    Aziz, Sameen
    Munir, Kashif
    Raza, Ali
    Almutairi, Mubarak S.
    Nawaz, Shoaib
    IEEE ACCESS, 2023, 11 : 127880 - 127894
  • [9] An adaptive online learning framework for practical breast cancer diagnosis
    Chu, Tianshu
    Wang, Jie
    Chen, Jiayu
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [10] Classifying breast cancer using transfer learning models based on histopathological images
    Meghavi Rana
    Megha Bhushan
    Neural Computing and Applications, 2023, 35 : 14243 - 14257