Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic damping

被引:0
作者
Xiaoying Hu
Chunyan Zhou
机构
[1] Beijing Institute of Technology,School of Aerospace Engineering
来源
Nonlinear Dynamics | 2022年 / 107卷
关键词
Quasi-zero-stiffness; Vibration isolation; Nonlinear hysteretic damping; Harmonic balance method; One-third subharmonic resonance; Transmissibility;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear Quasi-zero-stiffness (QZS) vibration isolation systems with linear damping cannot lead to displacement isolation with different excitation levels. In this study, a QZS system with nonlinear hysteretic damping is investigated. The Duffing-Ueda equation with a coupling nonlinear parameter η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} is proposed to describe the dynamic motion of the QZS system. By using the harmonic balance method (HBM), the primary and secondary harmonic responses are obtained and verified by numerical simulations. The results indicate that nonlinear damping can guarantee a bounded response for different excitation levels. The one-third subharmonic response is found to affect the isolation frequency range even when the primary response is stable. To evaluate the performance of the QZS system, the effective isolation frequency Ωe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }_{e}$$\end{document} and maximum transmissibility Tp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{p}$$\end{document} are proposed to represent the vibration isolation range and isolation effect, respectively. By discussing the effect of η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} on Ωe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }_{e}$$\end{document} and Tp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{p}$$\end{document}, the conditions to avoid nonlinear phenomena and improve the isolation performance are provided. A prototype of the QZS system is then constructed for vibration tests, which verified the theoretical analysis.
引用
收藏
页码:2153 / 2175
页数:22
相关论文
共 102 条
[1]  
Ibrahim RA(2008)Recent advances in nonlinear passive vibration isolators J. Sound. Vib. 314 371-452
[2]  
Mizuno T(2004)Vibration isolation system using negative stiffness Int. J. Japan Soc. Prec. Eng. 73 418-421
[3]  
Li H(2019)Negative stiffness devices for vibration isolation applications: a review Adv. Struct. Eng. 23 1739-1755
[4]  
Li YC(1991)Nonlinear behavior of a passive zero-spring-rate suspension system J. Guid. Control. Dynam. 14 84-89
[5]  
Li JC(2019)Theoretical analysis of vibration pickups with quasi-zero-stiffness characteristic Acta. Mech. 230 3205-3220
[6]  
Woodard SE(1958)The support of an aircraft for ground resonance tests: a survey of available methods Aircr. Eng. Aerosp. 30 160-166
[7]  
Housner JM(2007)Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic J. Sound. Vib. 301 678-689
[8]  
Naeeni IP(2009)On the force transmissibility of a vibration isolator with quasi-zero stiffness J. Sound. Vib. 322 707-717
[9]  
Ghayour M(2012)Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness Int. J. Mech. Sci. 55 22-29
[10]  
Keshavarzi A(2007)Optimization of a quasi-zero-stiffness isolator J. Mech. Sci. Technol. 21 946-949