A note on Bayesian nonparametric regression function estimation

被引:0
作者
Catia Scricciolo
机构
[1] Università Commerciale “L. Bocconi”,Istituto di Metodi Quantitativi
来源
Statistical Methods and Applications | 2008年 / 17卷
关键词
Nonparametric regression; Posterior distribution; Rate of convergence; Sieve prior;
D O I
暂无
中图分类号
学科分类号
摘要
In this note the problem of nonparametric regression function estimation in a random design regression model with Gaussian errors is considered from the Bayesian perspective. It is assumed that the regression function belongs to a class of functions with a known degree of smoothness. A prior distribution on the given class can be induced by a prior on the coefficients in a series expansion of the regression function through an orthonormal system. The rate of convergence of the resulting posterior distribution is employed to provide a measure of the accuracy of the Bayesian estimation procedure defined by the posterior expected regression function. We show that the Bayes’ estimator achieves the optimal minimax rate of convergence under mean integrated squared error over the involved class of regression functions, thus being comparable to other popular frequentist regression estimators.
引用
收藏
页码:321 / 334
页数:13
相关论文
共 50 条
  • [41] A NOTE ON A NONPARAMETRIC REGRESSION TEST THROUGH PENALIZED SPLINES
    Chen, Huaihou
    Wang, Yuanjia
    Li, Runze
    Shear, Katherine
    STATISTICA SINICA, 2014, 24 (03) : 1143 - 1160
  • [42] Distributed penalizing function criterion for local polynomial estimation in nonparametric regression with massive data
    Sun, Tianqi
    Li, Weiyu
    Lin, Lu
    STATISTICAL PAPERS, 2025, 66 (03)
  • [43] Nonparametric regression function estimation using interaction least squares splines and comlexity regularization
    Michael Kohler
    Metrika, 1998, 47 : 147 - 163
  • [44] Trapezoidal rule and sampling designs for the nonparametric estimation of the regression function in models with correlated errors
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    STATISTICS, 2020, 54 (01) : 59 - 96
  • [45] ROBUST NONPARAMETRIC FUNCTION ESTIMATION
    FAN, JQ
    HU, TC
    TRUONG, YK
    SCANDINAVIAN JOURNAL OF STATISTICS, 1994, 21 (04) : 433 - 446
  • [46] Nonparametric estimation of a periodic function
    Hall, P
    Reimann, J
    Rice, J
    BIOMETRIKA, 2000, 87 (03) : 545 - 557
  • [47] Location estimation in nonparametric regression with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1558 - 1582
  • [48] Nonparametric regression estimation at design poles and zeros
    Hengartner, NW
    Linton, OB
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (04): : 583 - 591
  • [49] Extrapolation estimation for nonparametric regression with measurement error
    Song, Weixing
    Ayub, Kanwal
    Shi, Jianhong
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 1 - 31
  • [50] Nonparametric estimation of an additive quantile regression model
    Horowitz, JL
    Lee, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1238 - 1249