Inhomogeneous Navier-Stokes equations;
Littlewood-Paley theory;
Global smooth solutions;
35Q30;
76D03;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Under the assumptions that the initial density ρ0 is close enough to 1 and ρ0 − 1 ∈ Hs+1(ℝ2), u0 ∈ Hs(ℝ2) ∩ Ḣ−ε(ℝ2) for s > 2 and 0 < ε < 1, the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient depending on the density of the fluid. Furthermore, the L2 decay rate of the velocity field is obtained.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R China
Huang, Xiangdi
Wang, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R China
机构:
Department of Mathematics, Indiana University, BloomingtonDepartment of Mathematics, Indiana University, Bloomington
Dascaliuc R.
Gname C.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Indiana University, Bloomington
Department of Mathematics, Texas A and M University, College StationDepartment of Mathematics, Indiana University, Bloomington
机构:
Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, FranceChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Paicu, Marius
Zhang, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China