On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

被引:0
作者
Chunfang Shen
Hui Zhou
Liu Yang
机构
[1] Hefei Normal University,College of Mathematics and Statistics
[2] University of Science and Technology of China,College of Mathematical Science
来源
Boundary Value Problems | / 2015卷
关键词
fractional differential equation; boundary value problem; infinite interval; fixed point theorem; 34B10; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
This work deals with a boundary value problem for a nonlinear multi-point fractional differential equation on the infinite interval. By constructing the proper function spaces and the norm, we overcome the difficulty following from the noncompactness of [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0, \infty)$\end{document}. By using the Schauder fixed point theorem, we show the existence of one solution with suitable growth conditions imposed on the nonlinear term.
引用
收藏
相关论文
共 48 条
[1]  
Delbosco D(1994)Fractional calculus and function spaces J. Fract. Calc. 6 45-53
[2]  
Lakshmikantham V(2007)Theory of fractional differential inequalities and applications Commun. Appl. Anal. 11 395-402
[3]  
Leela S(2008)Theory of fractional differential equations in a Banach space Eur. J. Pure Appl. Math. 1 38-45
[4]  
Lakshmikantham V(2009)Nagumo-type uniqueness result for fractional differential equations Nonlinear Anal. TMA 71 2886-2889
[5]  
Devi J(2009)A Krasnoselskii-Krein-type uniqueness result for fractional differential equations Nonlinear Anal. TMA 71 3421-3424
[6]  
Lakshmikantham V(2008)Theory of fractional differential equations Nonlinear Anal. TMA 69 3337-3343
[7]  
Leela S(2010)On the concept of solution for fractional differential equations with uncertainty Nonlinear Anal. 72 2859-2862
[8]  
Lakshmikantham V(2008)Existence results for fractional order functional differential equations with infinite delay J. Math. Anal. Appl. 338 1340-1350
[9]  
Leela S(2008)Existence and uniqueness of fractional functional differential equations with unbounded delay Int. J. Dyn. Syst. Differ. Equ. 1 239-244
[10]  
Lakshmikantham V(2010)On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. TMA 72 916-924