Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem

被引:0
作者
Vivina Barutello
Susanna Terracini
Gianmaria Verzini
机构
[1] Università degli Studi di Torino,Dipartimento di Matematica
[2] Università degli Studi di Milano–Bicocca,Dipartimento di Matematica e Applicazioni
[3] Politecnico di Milano,Dipartimento di Matematica
来源
Archive for Rational Mechanics and Analysis | 2013年 / 207卷
关键词
Periodic Solution; Kepler Problem; Periodic Trajectory; Saddle Connection; Constrain Minimization Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We continue the variational approach to parabolic trajectories introduced in our previous paper (Barutello et al., Entire parabolic trajectories as minimal phase transitions. arXiv:1105.3358v1, 2011), which sees parabolic orbits as minimal phase transitions. We deepen and complete the analysis in the planar case for homogeneous singular potentials. We characterize all parabolic orbits connecting two minimal central configurations as free-time Morse minimizers (in a given homotopy class of paths). These may occur for at most one value of the homogeneity exponent. In addition, we link this threshold of existence of parabolic trajectories with the absence of collisions for all the minimizers of fixed-end problems, and also with the existence of action minimizing periodic trajectories with nontrivial homotopy type.
引用
收藏
页码:583 / 609
页数:26
相关论文
共 32 条
[1]  
Arioli G.(2000)Minimization properties of Hill’s orbits and applications to some Ann. Inst. H. Poincaré Anal. Non Linéaire 17 617-650
[2]  
Gazzola F.(2008)-body problems Ann. Inst. H. Poincaré Anal. Non Linéaire 25 539-565
[3]  
Terracini S.(2001)Morse index properties of colliding solutions to the Arch. Ration. Mech. Anal. 158 293-318
[4]  
Barutello V.(2008)-body problem Ann. Math. (2) 167 325-348
[5]  
Secchi S.(1999)Action-minimizing orbits in the parallelogram four-body problem with equal masses Ann. Math. 152 881-901
[6]  
Chen K-C.(2000)Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses Celestial Mech. Dynam. Astronom. 77 139-152
[7]  
Chen K-C.(1992)A remarkable periodic solution of the three body problem in the case of equal masses Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 3 217-222
[8]  
Chenciner A.(1994)Minima de l’intégrale d’action du probléme newtonien de 4 corps de masses égales dans Ann. Mat. Pura Appl. (4) 166 343-362
[9]  
Montgomery R.(1988): orbites “hip-hop” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 271-277
[10]  
Chenciner A.(1978)Some properties of collision and noncollision orbits for a class of singular dynamical systems Invent. Math. 45 221-251