On a more accurate half-discrete multidimensional Hilbert-type inequality involving one derivative function of m-order

被引:0
作者
Yong Hong
Yanru Zhong
Bicheng Yang
机构
[1] Guangzhou Huashang College,Department of Applied Mathematics
[2] Guangdong University of Finance and Economics,School of Computer Science and Information Security
[3] Guilin University of Electronic Technology,School of Mathematics
[4] Guangdong University of Education,undefined
来源
Journal of Inequalities and Applications | / 2023卷
关键词
Weight function; Half-discrete multidimensional Hilbert-type inequality; Derivative function of m-order; Parameter; Beta function; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the weight functions, the idea of introduced parameters, using the transfer formula and Hermite–Hadamard’s inequality, a more accurate half-discrete multidimensional Hilbert-type inequality with the homogeneous kernel as 1(x+∥k−ξ∥α)λ+m(x,λ>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{(x + \Vert k - \xi \Vert _{\alpha} )^{\lambda + m}}\ (x,\lambda > 0)$\end{document} involving one derivative function of m-order is given. The equivalent conditions of the best possible constant factor related to several parameters are considered. The equivalent forms. the operator expressions and some particular inequalities are obtained.
引用
收藏
相关论文
共 55 条
  • [1] Yang B.C.(2006)On the norm of an integral operator and applications J. Math. Anal. Appl. 321 182-192
  • [2] Xu J.S.(2007)Hardy–Hilbert’s inequalities with two parameters Adv. Math. 36 63-76
  • [3] Yang B.C.(2007)On the norm of a Hilbert’s type linear operator and applications J. Math. Anal. Appl. 325 529-541
  • [4] Xie Z.T.(2013)A new Hilbert-type inequality with the homogeneous kernel of degree-2 Adv. Appl. Math. Sci. 12 391-401
  • [5] Zeng Z.(2014)A new Hilbert-type inequality with the homogeneous kernel of degree-2 and with the integral Bull. Math. Sci. Appl. 3 11-20
  • [6] Sun Y.F.(2010)A Hilbert-type integral inequality with the homogeneous kernel of zero degree Mathematical Theory and Applications 30 70-74
  • [7] Zhen Z.(2013)The connection between Hilbert and Hardy inequalities J. Inequal. Appl. 2013 263-283
  • [8] Raja Rama Gandhi K.(2017)Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces Math. Inequal. Appl. 20 320-337
  • [9] Xie Z.T.(2016)Multiple Hilbert-type inequalities involving some differential operators Banach J. Math. Anal. 10 111-124
  • [10] Xin D.M.(2015)Hilbert-type inequalities involving differential operators, the best constants and applications Math. Inequal. Appl. 18 75-93