S-asymptotically T-periodic solutions for delay fractional differential equations with almost sectorial operator

被引:0
作者
Huiwen Wang
Fang Li
机构
[1] Yunnan Normal University,School of Mathematics
来源
Advances in Difference Equations | / 2016卷
关键词
fractional differential equation; Caputo derivative; almost sectorial operator; S-asymptotically ; -periodic; finite delay; 34A08; 34A12; 34K25; 34K37;
D O I
暂无
中图分类号
学科分类号
摘要
We address the existence and uniqueness of S-asymptotically T-periodic solution of delay fractional differential equations with almost sectorial operator in infinite dimensional Banach spaces. Under the weak assumptions, we obtain the existence and uniqueness result. An example is presented.
引用
收藏
相关论文
共 33 条
  • [1] El-Borai MM(2004)Some probability densities and fundamental solutions of fractional evolution equations Chaos Solitons Fractals 149 823-831
  • [2] Cuevas C(2009)S-asymptotically Appl. Math. Lett. 22 865-870
  • [3] de Souza JC(2010)-periodic solutions of semilinear fractional integro-differential equations Appl. Math. Lett. 23 960-965
  • [4] dos Santos JPC(2010)Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations Adv. Differ. Equ. 2010 145-157
  • [5] Cuevas C(2015)On type of periodicity and ergodicity to a class of fractional order differential equations Appl. Math. Comput. 257 7622-7628
  • [6] Agarwal RP(2012)Fractional Cauchy problems with almost sectorial operators Appl. Math. Comput. 218 1119-1130
  • [7] de Andrade B(2008)S-asymptotically J. Math. Anal. Appl. 343 246-256
  • [8] Cuevas C(2011)-periodic solutions to some classes of partial evolution equations Electron. J. Differ. Equ. 2011 951-971
  • [9] Zhang L(2013)On S-asymptotically Commun. Nonlinear Sci. Numer. Simul. 18 310-332
  • [10] Zhou Y(2015)-periodic function on Banach spaces and applications Fract. Calc. Appl. Anal. 18 741-764