Lyapunov-type inequalities for a class of fractional differential equations

被引:0
作者
Donal O’Regan
Bessem Samet
机构
[1] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[2] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM)
[3] King Saud University,Research Group, Department of Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Lyapunov’s inequality; fractional boundary value problem; Green’s function; eigenvalue; 26D10; 34A08; 34B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish new Lyapunov-type inequalities for a class of fractional boundary value problems. As an application, we obtain a lower bound for the eigenvalues of corresponding equations.
引用
收藏
相关论文
共 37 条
  • [1] Hartman P(1951)On an oscillation criterion of Liapunov Am. J. Math. 73 885-890
  • [2] Wintner A(2013)Lyapunov-type inequalities for a certain class of Electron. J. Differ. Equ. 2013 101-108
  • [3] Aktas MF(2013)-dimensional quasilinear systems Math. Inequal. Appl. 16 368-373
  • [4] Çakmak D(2010)On Lyapunov-type inequality for a class of nonlinear systems Appl. Math. Comput. 216 105-112
  • [5] Çakmak D(1983)Lyapunov-type integral inequalities for certain higher order differential equations Hokkaido Math. J. 12 461-466
  • [6] Cheng SS(1970)A discrete analogue of the inequality of Lyapunov J. Lond. Math. Soc. 2 978-984
  • [7] Eliason SB(2013)A Lyapunov inequality for a certain nonlinear differential equation Fract. Calc. Appl. Anal. 16 1058-1063
  • [8] Ferreira RAC(2014)A Lyapunov-type inequality for a fractional boundary value problem J. Math. Anal. Appl. 412 465-473
  • [9] Ferreira RAC(2012)On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function Commun. Pure Appl. Anal. 11 443-451
  • [10] He X(2015)Lyapunov-type inequalities for even order differential equations Math. Inequal. Appl. 18 486-494