An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network

被引:0
|
作者
Binsen Peng
Hong Xia
Xinzhi Lv
M. Annor-Nyarko
Shaomin Zhu
Yongkuo Liu
Jiyu Zhang
机构
[1] Ministry of Industry and Information Technology,Key Laboratory of Nuclear Safety and Advanced Nuclear Energy Technology
[2] Harbin Engineering University,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory
[3] Nuclear Power Institute of China,Science and Technology on Reactor System Design Technology Laboratory
[4] Nuclear Regulatory Authority,Nuclear Installations Directorate
来源
Applied Intelligence | 2022年 / 52卷
关键词
Rotating machinery; Fault diagnosis; Data fusion; Deep residual neural network; Short-time Fourier transform;
D O I
暂无
中图分类号
学科分类号
摘要
Rotating machinery is a very important mechanical device widely used in critical industrial applications. Efficient fault detection and diagnosis are key challenges in the maintenance and operational reliability of rotating machinery. To overcome this problem, a novel fault diagnosis method for rotating machinery based on deep residual neural network (DRNN) and data fusion is proposed. First, the time domain and frequency domain features of the original signal are extracted through the Short-time Fourier transform (STFT) layer, and then the deep residual network and the fusion embedding layer are used to fuse the time domain, frequency domain and spatial domain features to obtain high-quality low-dimensional fusion features. Finally, the fault type is obtained through the classifier. The proposed method is applied to the fault diagnosis of rolling bearing and gearbox, and the performance of the model has been tested comprehensively, including model training test, anti-noise test, fault tolerance test. The results confirm that the proposed method is much more effective and robust for feature learning, model training, anti-noise, fault tolerance and fault diagnosis than other fusion learning methods and single sensor-based methods. This fully reflects the advantages of multi-source information fusion in ensuring the reliable operation of rotating machinery.
引用
收藏
页码:3051 / 3065
页数:14
相关论文
共 50 条
  • [41] An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery
    Zhuang, Kejia
    Deng, Bin
    Chen, Huai
    Jiang, Li
    Li, Yibing
    Hu, Jun
    Lam, Heungfai
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [42] A Fault Diagnosis Method of Rotating Machinery Based on LBDP
    Shi M.
    Zhao R.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2021, 32 (14): : 1653 - 1658and1668
  • [43] FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK
    李如强
    陈进
    伍星
    Applied Mathematics and Mechanics(English Edition), 2006, (01) : 99 - 108
  • [44] Fault diagnosis based on SPBO-SDAE and transformer neural network for rotating machinery
    Du, Xianjun
    Jia, Liangliang
    Ul Haq, Izaz
    MEASUREMENT, 2022, 188
  • [45] Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network
    Li, RQ
    Chen, J
    Wu, X
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (01) : 99 - 108
  • [46] Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network
    Ru-qiang Li
    Jin Chen
    Xing Wu
    Applied Mathematics and Mechanics, 2006, 27 : 99 - 108
  • [47] A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery
    Zhou, Quan
    Li, Yibing
    Tian, Yu
    Jiang, Li
    MEASUREMENT, 2020, 161 (161)
  • [49] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [50] ART-KOHONEN neural network for fault diagnosis of rotating machinery
    Yang, BS
    Han, T
    An, JL
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (03) : 645 - 657