An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network

被引:0
|
作者
Binsen Peng
Hong Xia
Xinzhi Lv
M. Annor-Nyarko
Shaomin Zhu
Yongkuo Liu
Jiyu Zhang
机构
[1] Ministry of Industry and Information Technology,Key Laboratory of Nuclear Safety and Advanced Nuclear Energy Technology
[2] Harbin Engineering University,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory
[3] Nuclear Power Institute of China,Science and Technology on Reactor System Design Technology Laboratory
[4] Nuclear Regulatory Authority,Nuclear Installations Directorate
来源
Applied Intelligence | 2022年 / 52卷
关键词
Rotating machinery; Fault diagnosis; Data fusion; Deep residual neural network; Short-time Fourier transform;
D O I
暂无
中图分类号
学科分类号
摘要
Rotating machinery is a very important mechanical device widely used in critical industrial applications. Efficient fault detection and diagnosis are key challenges in the maintenance and operational reliability of rotating machinery. To overcome this problem, a novel fault diagnosis method for rotating machinery based on deep residual neural network (DRNN) and data fusion is proposed. First, the time domain and frequency domain features of the original signal are extracted through the Short-time Fourier transform (STFT) layer, and then the deep residual network and the fusion embedding layer are used to fuse the time domain, frequency domain and spatial domain features to obtain high-quality low-dimensional fusion features. Finally, the fault type is obtained through the classifier. The proposed method is applied to the fault diagnosis of rolling bearing and gearbox, and the performance of the model has been tested comprehensively, including model training test, anti-noise test, fault tolerance test. The results confirm that the proposed method is much more effective and robust for feature learning, model training, anti-noise, fault tolerance and fault diagnosis than other fusion learning methods and single sensor-based methods. This fully reflects the advantages of multi-source information fusion in ensuring the reliable operation of rotating machinery.
引用
收藏
页码:3051 / 3065
页数:14
相关论文
共 50 条
  • [31] Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
    Wu, Chunzhi
    Jiang, Pengcheng
    Ding, Chuang
    Feng, Fuzhou
    Chen, Tang
    COMPUTERS IN INDUSTRY, 2019, 108 : 53 - 61
  • [32] Multi-feature fusion for fault diagnosis of rotating machinery based on convolutional neural network
    Liu, Shaoqing
    Ji, Zhenshan
    Wang, Yong
    Zhang, Zuchao
    Xu, Zhanghou
    Kan, Chaohao
    Jin, Ke
    COMPUTER COMMUNICATIONS, 2021, 173 : 160 - 169
  • [33] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [34] Convolutional neural network intelligent fault diagnosis method for rotating machinery based on discriminant correlation analysis multi-domain feature fusion strategy
    Lan, Guisheng
    Shi, Haibo
    JOURNAL OF VIBROENGINEERING, 2024, 26 (03) : 567 - 589
  • [35] A time series and deep fusion framework for rotating machinery fault diagnosis
    Zhang, Jiasheng
    Hu, Di
    Yang, Tao
    Zhou, Hongkuan
    Li, Xianling
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [36] A New Method Based on Encoding Data Probability Density and Convolutional Neural Network for Rotating Machinery Fault Diagnosis
    Zhang, Bowen
    Pang, Xinyu
    Zhao, Peng
    Lu, Kaibo
    IEEE ACCESS, 2023, 11 : 26099 - 26113
  • [37] Fault diagnosis method of rotating machinery for unlabeled data
    Chen F.
    Yang Z.
    Zhang Z.-C.
    Luo W.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (11): : 2514 - 2522
  • [38] Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    Jia, Feng
    Lei, Yaguo
    Lin, Jing
    Zhou, Xin
    Lu, Na
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 72-73 : 303 - 315
  • [39] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [40] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310