An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network

被引:0
|
作者
Binsen Peng
Hong Xia
Xinzhi Lv
M. Annor-Nyarko
Shaomin Zhu
Yongkuo Liu
Jiyu Zhang
机构
[1] Ministry of Industry and Information Technology,Key Laboratory of Nuclear Safety and Advanced Nuclear Energy Technology
[2] Harbin Engineering University,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory
[3] Nuclear Power Institute of China,Science and Technology on Reactor System Design Technology Laboratory
[4] Nuclear Regulatory Authority,Nuclear Installations Directorate
来源
Applied Intelligence | 2022年 / 52卷
关键词
Rotating machinery; Fault diagnosis; Data fusion; Deep residual neural network; Short-time Fourier transform;
D O I
暂无
中图分类号
学科分类号
摘要
Rotating machinery is a very important mechanical device widely used in critical industrial applications. Efficient fault detection and diagnosis are key challenges in the maintenance and operational reliability of rotating machinery. To overcome this problem, a novel fault diagnosis method for rotating machinery based on deep residual neural network (DRNN) and data fusion is proposed. First, the time domain and frequency domain features of the original signal are extracted through the Short-time Fourier transform (STFT) layer, and then the deep residual network and the fusion embedding layer are used to fuse the time domain, frequency domain and spatial domain features to obtain high-quality low-dimensional fusion features. Finally, the fault type is obtained through the classifier. The proposed method is applied to the fault diagnosis of rolling bearing and gearbox, and the performance of the model has been tested comprehensively, including model training test, anti-noise test, fault tolerance test. The results confirm that the proposed method is much more effective and robust for feature learning, model training, anti-noise, fault tolerance and fault diagnosis than other fusion learning methods and single sensor-based methods. This fully reflects the advantages of multi-source information fusion in ensuring the reliable operation of rotating machinery.
引用
收藏
页码:3051 / 3065
页数:14
相关论文
共 50 条
  • [21] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [22] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [23] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [24] Intelligent fault diagnosis of rotating machinery based on a novel lightweight convolutional neural network
    Lu, Yuqi
    Mi, Jinhua
    Liang, He
    Cheng, Yuhua
    Bai, Libing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2022, 236 (04) : 554 - 569
  • [25] Convolutional Neural Network-Based Bayesian Gaussian Mixture for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Chen, Zuoyi
    Shao, Xinyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [26] Enhanced deep residual network with multilevel correlation information for fault diagnosis of rotating machinery
    Xiong, Shoucong
    He, Shuai
    Xuan, Jianping
    Xia, Qi
    Shi, Tielin
    JOURNAL OF VIBRATION AND CONTROL, 2021, 27 (15-16) : 1713 - 1723
  • [27] A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks
    Yang, Daoguang
    Karimi, Hamid Reza
    Gelman, Len
    SENSORS, 2022, 22 (02)
  • [28] A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
    Guo, Sheng
    Yang, Tao
    Gao, Wei
    Zhang, Chen
    SENSORS, 2018, 18 (05)
  • [29] Data Preprocessing Techniques in Convolutional Neural Network Based on Fault Diagnosis Towards Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 149487 - 149496
  • [30] A fault diagnosis method for bearings and gears in rotating machinery based on data fusion and transfer learning
    Zhang, Yi
    Yan, Xiaoxiang
    Xiao, Ping
    Zou, Jialing
    Hu, Ling
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)