Spectral Characteristics of a Finite 2D Ising Model

被引:0
作者
Karandashev I.M. [1 ,2 ]
Kryzhanovsky B.V. [1 ]
Malsagov M.Y. [1 ]
机构
[1] Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow
[2] Peoples Friendship University of Russia (RUDN University), Moscow
来源
Optical Memory and Neural Networks (Information Optics) | 2018年 / 27卷 / 03期
关键词
2D Ising model; critical point; energy dispersion; internal energy; partition function; spectral density;
D O I
10.3103/S1060992X18030025
中图分类号
O21 [概率论与数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Abstract: The paper gives the results of a numerical simulation of a two-dimensional Ising model built on finite lattices of dimension L = 50, 100, …, 500. Approximate analytical formulae for the spectral energy density are offered. Derived from Onsager’s solution with consideration of the finite size of the system, the formulae agree well with the simulation results. © 2018, Allerton Press, Inc.
引用
收藏
页码:147 / 151
页数:4
相关论文
共 24 条
[1]  
Baxter R.J., Exactly Solved Models in Statistical Mechanics, (1982)
[2]  
Stanley H., Introduction to Phase Transitions and Critical Phenomena, (1971)
[3]  
Amit D., Gutfreund H., Sompolinsky H., Statistical mechanics of neural networks near saturation, Ann. Phys., 173, pp. 30-67, (1987)
[4]  
Van Hemmen J.L., Kuhn R., Models of Neural Networks, (1992)
[5]  
Martin O.C., Monasson R., Zecchina R., Statistical mechanics methods and phase transitions in optimization problems, Theor. Comput. Sci., 265, pp. 3-67, (2001)
[6]  
Karandashev I., Kryzhanovsky B., Litinskii L., Weighted patterns as a tool to improve the Hopfield model, Phys. Rev. E, 85, (2012)
[7]  
Hinton G.E., Osindero S., The Y., A fast learning algorithm for deep belief nets, Neural Comput., 18, pp. 1527-1554, (2006)
[8]  
Wainwright M.J., Jaakkola T., Willsky A.S., A new class of upper bounds on the log partition function, IEEE Trans. Inform. Theory, 51, pp. 2313-2335, (2005)
[9]  
Yedidia J.S., Freeman W.T., Weiss Y., Constructing free-energy approximations and generalized belief propagation algorithms, IEEE Trans. Inform. Theory, 51, pp. 2282-2312, (2005)
[10]  
Blote H.W.J., Shchur L.N., Talapov A.L., The cluster processor: new results, Int. J. Mod. Phys. C, 10, pp. 1137-1148, (1999)