Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras

被引:0
|
作者
Dongfang Zhang
Changjing Li
YuanYuan Zhao
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
Factor von Neumann algebras; Isomorphism; Bi-skew Jordan product; 47B49; 46L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} be a factor von Neumann algebra with dim(A)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}})\ge 2$$\end{document}. For any A,B∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in {\mathcal {A}}$$\end{document}, a product A▵B=A∗B+B∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\mathbin {\triangle }B=A^{*}B+B^{*}A$$\end{document} is called a bi-skew Jordan product. In this paper, it is proved that every bijective map preserving bi-skew Jordan triple product on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism.
引用
收藏
页码:578 / 586
页数:8
相关论文
共 50 条
  • [41] Nonlinear maps preserving Lie products on factor von Neumann algebras
    Zhang, Jian-Hua
    Zhang, Fang-Juan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) : 18 - 30
  • [42] MAPS PRESERVING JORDAN AND *-JORDAN TRIPLE PRODUCT ON OPERATOR *-ALGEBRAS
    Darvish, Vahid
    Nouri, Mojtaba
    Razeghi, Mehran
    Taghavi, Ali
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 451 - 459
  • [43] NONLINEAR *-JORDAN TRIPLE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Zhao, Fangfang
    Li, Chanjing
    MATHEMATICA SLOVACA, 2018, 68 (01) : 163 - 170
  • [44] Nonlinear Maps Preserving the Mixed Product [A ○ B, C]* on Von Neumann Algebras
    Li, Changjing
    Zhao, Yuanyuan
    Zhao, Fangfang
    FILOMAT, 2021, 35 (08) : 2775 - 2781
  • [45] NONLINEAR MAPS PRESERVING THE MIXED PRODUCT A • B ° C ON VON NEUMANN ALGEBRAS
    Abedini, Leila
    Taghavi, Ali
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 671 - 678
  • [46] Characterization of Nonlinear Mixed Bi-Skew Lie Triple Derivations on ∗-Algebras
    Alsuraiheed, Turki
    Nisar, Junaid
    Rehman, Nadeem ur
    MATHEMATICS, 2024, 12 (09)
  • [47] Nonlinear mixed bi-skew Jordan-type derivations on prime *-algebras
    Yang, Yuan
    Zhang, Jianhua
    FILOMAT, 2024, 38 (22) : 7707 - 7718
  • [48] Maps preserving product XY-YX* on factor von Neumann algebras
    Cui, Jianlian
    Li, Chi-Kwong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 833 - 842
  • [49] Non-linear mixed Jordan bi-skew Lie triple derivations on *-algebras
    Ali, Asma
    Tasleem, Mohd
    Khan, Abdul Nadim
    FILOMAT, 2024, 38 (06) : 2079 - 2090
  • [50] On Mixed Nonlinear Skew Lie (Jordan) Products on Von Neumann Algebras
    Alhazmi, Husain
    Raza, Mohd Arif
    Khan, Abdul Nadim
    AL-Sobhi, Tahani
    JOURNAL OF MATHEMATICS, 2024, 2024