Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras

被引:0
|
作者
Dongfang Zhang
Changjing Li
YuanYuan Zhao
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
Factor von Neumann algebras; Isomorphism; Bi-skew Jordan product; 47B49; 46L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} be a factor von Neumann algebra with dim(A)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}})\ge 2$$\end{document}. For any A,B∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in {\mathcal {A}}$$\end{document}, a product A▵B=A∗B+B∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\mathbin {\triangle }B=A^{*}B+B^{*}A$$\end{document} is called a bi-skew Jordan product. In this paper, it is proved that every bijective map preserving bi-skew Jordan triple product on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism.
引用
收藏
页码:578 / 586
页数:8
相关论文
共 50 条
  • [31] Maps on C*-algebras Bi-skew Lie Derivable or Bi-skew Lie Triple Derivable at the Unit
    Wang, Zhonghua
    IAENG International Journal of Applied Mathematics, 2024, 54 (01) : 20 - 24
  • [32] The nonlinear mixed bi-skew Lie triple derivations on ∗-algebras
    Wang, Jingxuan
    Li, Changjing
    Liang, Yueliang
    Chen, Lin
    FILOMAT, 2023, 37 (29) : 9981 - 9989
  • [33] Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras
    Yang, Zhujun
    Zhang, Jianhua
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (02): : 377 - 390
  • [34] Maps Completely Preserving Jordan 1-*-Zero-Product on Factor Von Neumann Algebras
    Li HUANG
    Yu ZHANG
    Wenhui LI
    Journal of Mathematical Research with Applications, 2018, 38 (03) : 287 - 292
  • [35] A Note on Nonlinear Mixed (bi-Skew, skew Lie) Triple Derivations on *-Algebras
    Raza, M. Arif
    Nisar, Junaid
    Rehman, Nadeem ur
    Darvish, Vahid
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [36] Nonlinear Mixed Jordan triple *-Derivations on Factor von Neumann Algebras
    Li, Changjing
    Zhang, Dongfang
    FILOMAT, 2022, 36 (08) : 2637 - 2644
  • [37] NONLINEAR MAPS PRESERVING CONDITION SPECTRUM OF JORDAN SKEW TRIPLE PRODUCT OF OPERATORS
    Benbouziane, H.
    Bouramdane, Y.
    El Kettani, M. Ech-Cherif
    Lahssaini, A.
    OPERATORS AND MATRICES, 2018, 12 (04): : 933 - 942
  • [38] Nonlinear bi-skew Jordan-type higher derivations on ∗-algebras
    Liang, Xinfeng
    Guo, Haonan
    Zhao, Lingling
    FILOMAT, 2024, 38 (17) : 6087 - 6098
  • [39] Nonlinear Generalized Bi-skew Jordan n-Derivations on *-Algebras
    Ashraf, Mohammad
    Akhter, Md Shamim
    Ansari, Mohammad Afajal
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [40] Strong skew commutativity preserving maps on von Neumann algebras
    Qi, Xiaofei
    Hou, Jinchuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 362 - 370