Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras

被引:0
|
作者
Dongfang Zhang
Changjing Li
YuanYuan Zhao
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
Factor von Neumann algebras; Isomorphism; Bi-skew Jordan product; 47B49; 46L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} be a factor von Neumann algebra with dim(A)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}})\ge 2$$\end{document}. For any A,B∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in {\mathcal {A}}$$\end{document}, a product A▵B=A∗B+B∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\mathbin {\triangle }B=A^{*}B+B^{*}A$$\end{document} is called a bi-skew Jordan product. In this paper, it is proved that every bijective map preserving bi-skew Jordan triple product on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism.
引用
收藏
页码:578 / 586
页数:8
相关论文
共 50 条
  • [21] Nonlinear Maps Preserving Mixed Jordan Triple Products on von Neumann Algebras
    Dongfang ZHANG
    Changjing LI
    Yuanyuan ZHAO
    Journal of Mathematical Research with Applications, 2022, 42 (04) : 374 - 380
  • [22] MAPS PRESERVING STRONG SKEW LIE PRODUCT ON FACTOR VON NEUMANN ALGEBRAS
    崔建莲
    Choonkil Park
    ActaMathematicaScientia, 2012, 32 (02) : 531 - 538
  • [23] Nonlinear Mixed Bi-Skew Jordan Triple Derivations on Prime *-Algebras
    Fangfang ZHAO
    Dongfang ZHANG
    Changjing LI
    JournalofMathematicalResearchwithApplications, 2023, 43 (03) : 313 - 323
  • [24] MAPS PRESERVING STRONG SKEW LIE PRODUCT ON FACTOR VON NEUMANN ALGEBRAS
    Cui Jianlian
    Park, Choonkil
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 531 - 538
  • [25] Nonlinear Maps Preserving Product on von Neumann Algebras
    Li, C.
    Zhao, F.
    Chen, Q.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03): : 729 - 738
  • [26] Nonlinear mappings preserving Jordan multiple *- product on factor von Neumann algebras
    Huo, Donghua
    Zheng, Baodong
    Xu, Jinli
    Liu, Hongyu
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05): : 1026 - 1036
  • [27] Nonlinear mixed Jordan and bi-skew Jordan derivations on prime ∗-algebras
    Darvish, Vahid
    Razeghi, Mehran
    Nouri, Mojtaba
    FILOMAT, 2024, 38 (19) : 6681 - 6689
  • [28] NONLINEAR MAPS PRESERVING MIXED LIE TRIPLE PRODUCTS ON FACTOR VON NEUMANN ALGEBRAS
    Yang, Zhujun
    Zhang, Jianhua
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03): : 325 - 336
  • [29] Nonlinear bi-skew Jordan-type derivations on ?-algebras
    Zhao, Fangfang
    Zhang, Dongfang
    Li, Changjing
    FILOMAT, 2023, 37 (13) : 4211 - 4219
  • [30] Maps preserving *-Lie product on factor von Neumann algebras
    Wang, Meili
    Ji, Guoxing
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (11): : 2159 - 2168