Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras

被引:0
|
作者
Dongfang Zhang
Changjing Li
YuanYuan Zhao
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
Factor von Neumann algebras; Isomorphism; Bi-skew Jordan product; 47B49; 46L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} be a factor von Neumann algebra with dim(A)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}})\ge 2$$\end{document}. For any A,B∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in {\mathcal {A}}$$\end{document}, a product A▵B=A∗B+B∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\mathbin {\triangle }B=A^{*}B+B^{*}A$$\end{document} is called a bi-skew Jordan product. In this paper, it is proved that every bijective map preserving bi-skew Jordan triple product on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism.
引用
收藏
页码:578 / 586
页数:8
相关论文
共 50 条
  • [11] A result on nonlinear maps preserving mixed Jordan triple η-*-product on factor von Neumann algebras
    Alhazmi, Husain
    Khan, Abdul Nadim
    Raza, Mohd Arif
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 2099 - 2106
  • [12] Nonlinear Bi-skew Lie Derivations on Factor von Neumann Algebras
    Liang Kong
    Jianhua Zhang
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 1097 - 1106
  • [13] The second nonlinear mixed bi-skew Lie triple derivations on factor von Neumann algebras
    Yang, Yuan
    Zhang, Jianhua
    QUAESTIONES MATHEMATICAE, 2024, 47 (07) : 1403 - 1412
  • [14] Nonlinear Bi-skew Lie Derivations on Factor von Neumann Algebras
    Kong, Liang
    Zhang, Jianhua
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (04) : 1097 - 1106
  • [15] Nonlinear Maps Preserving the Jordan Triple 1-*-Product on Von Neumann Algebras
    Li, Changjing
    Lu, Fangyan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 109 - 117
  • [16] A note on strong skew Jordan product preserving maps on von Neumann algebras
    Ali Taghavi
    Farzaneh Kolivand
    Periodica Mathematica Hungarica, 2017, 75 : 330 - 335
  • [17] A note on strong skew Jordan product preserving maps on von Neumann algebras
    Taghavi, Ali
    Kolivand, Farzaneh
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 330 - 335
  • [18] Nonlinear skew Jordan derivable maps on factor von Neumann algebras
    Zhang, Fangjuan
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10): : 2090 - 2103
  • [19] A NOTE ON SKEW PRODUCT PRESERVING MAPS ON FACTOR VON NEUMANN ALGEBRAS
    Taghavi, Ali
    Rohi, Hamid
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (06) : 2083 - 2094
  • [20] Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras
    Ashraf, Mohammad
    Akhter, Md Shamim
    Ansari, Mohammad Afajal
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 4766 - 4780