Inverse Scattering for Schrödinger Operators on Perturbed Lattices

被引:0
|
作者
Kazunori Ando
Hiroshi Isozaki
Hisashi Morioka
机构
[1] Ehime University,Department of Electrical and Electronic Engineering and Computer Science
[2] University of Tsukuba,Professor Emeritus
[3] Doshisha University,Faculty of Science and Engineering
来源
Annales Henri Poincaré | 2018年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the inverse scattering for Schrödinger operators on locally perturbed periodic lattices. We show that the associated scattering matrix is equivalent to the Dirichlet-to-Neumann map for a boundary value problem on a finite part of the graph, and reconstruct scalar potentials as well as the graph structure from the knowledge of the S-matrix. In particular, we give a procedure for probing defects in hexagonal lattices (graphene).
引用
收藏
页码:3397 / 3455
页数:58
相关论文
共 50 条
  • [1] Correction to: Inverse Scattering for Schrödinger Operators on Perturbed Lattices
    Kazunori Ando
    Hiroshi Isozaki
    Hisashi Morioka
    Annales Henri Poincaré, 2019, 20 : 337 - 338
  • [2] Spectral Properties of Schrödinger Operators on Perturbed Lattices
    Kazunori Ando
    Hiroshi Isozaki
    Hisashi Morioka
    Annales Henri Poincaré, 2016, 17 : 2103 - 2171
  • [3] Inverse nodal problems for perturbed spherical Schrödinger operators
    Yu Liu
    Guoliang Shi
    Jun Yan
    Jia Zhao
    Analysis and Mathematical Physics, 2023, 13
  • [4] Inverse Scattering for Schrodinger Operators on Perturbed Lattices
    Ando, Kazunori
    Isozaki, Hiroshi
    Morioka, Hisashi
    ANNALES HENRI POINCARE, 2018, 19 (11): : 3397 - 3455
  • [5] Inverse Scattering Theory for Discrete Schrödinger Operators on the Hexagonal Lattice
    Kazunori Ando
    Annales Henri Poincaré, 2013, 14 : 347 - 383
  • [6] Spectral Asymptotics for Perturbed Spherical Schrödinger Operators and Applications to Quantum Scattering
    Aleksey Kostenko
    Gerald Teschl
    Communications in Mathematical Physics, 2013, 322 : 255 - 275
  • [7] On the Inverse Resonance Problem for Schrödinger Operators
    Marco Marlettta
    Roman Shterenberg
    Rudi Weikard
    Communications in Mathematical Physics, 2010, 295 : 465 - 484
  • [8] Inverse Spectral Problems for Schrödinger Operators
    Hamid Hezari
    Communications in Mathematical Physics, 2009, 288 : 1061 - 1088
  • [9] Scattering for the fractional magnetic Schrödinger operators
    Wei, Lei
    Duan, Zhiwen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (06) : 2391 - 2410
  • [10] SCATTERING FOR THE FRACTIONAL MAGNETIC SCHR?DINGER OPERATORS
    魏磊
    段志文
    Acta Mathematica Scientia, 2024, 44 (06) : 2391 - 2410