Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions

被引:49
作者
Liu, Wei [1 ]
Xia, Mengyang [1 ]
Zhao, Chao [1 ]
Chong, Ben [1 ]
Chen, Jiahe [1 ]
Li, He [1 ]
Ou, Honghui [1 ]
Yang, Guidong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, A XJTU Oxford Int Joint Lab Catalysis, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
HYDROGEN EVOLUTION REACTION; REDUCTION; NITRATE; OXIDE; CATALYSTS; SURFACE; MEDIA; WATER;
D O I
10.1038/s41467-024-47765-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While electrochemical N2 reduction presents a sustainable approach to NH3 synthesis, addressing the emission- and energy-intensive limitations of the Haber-Bosch process, it grapples with challenges in N2 activation and competing with pronounced hydrogen evolution reaction. Here we present a tandem air-NOx-NOx --NH3 system that combines non-thermal plasma-enabled N2 oxidation with Ni(OH)x/Cu-catalyzed electrochemical NOx - reduction. It delivers a high NH3 yield rate of 3 mmol h-1 cm-2 and a corresponding Faradaic efficiency of 92% at -0.25 V versus reversible hydrogen electrode in batch experiments, outperforming previously reported ones. Furthermore, in a flow mode concurrently operating the non-thermal plasma and the NOx - electrolyzer, a stable NH3 yield rate of approximately 1.25 mmol h-1 cm-2 is sustained over 100 h using pure air as the intake. Mechanistic studies indicate that amorphous Ni(OH)x on Cu interacts with hydrated K+ in the double layer through noncovalent interactions and accelerates the activation of water, enriching adsorbed hydrogen species that can readily react with N-containing intermediates. In situ spectroscopies and density functional theory (DFT) results reveal that NOx - adsorption and their hydrogenation process are optimized over the Ni(OH)x/Cu surface. This work provides new insights into electricity-driven distributed NH3 production using natural air at ambient conditions. The conversion of atmospheric N2 into NH3 under ambient pressure is highly interesting but very challenging. In this study, the authors present a tandem air-NOx and NOx-NH3 system that combines non-thermal plasma-enabled N2 oxidation with Ni(OH)x/Cu-catalyzed electrochemical NOx -reduction, resulting in a high NH3 yield from N2 under ambient pressure conditions.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
[Anonymous], 2021, Ammonia Technology Roadmap:Towards MoreSustainable Nitrogen Fertiliser Production
[2]   Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH)2-Modified Cu(111) [J].
Auer, Andrea ;
Sarabia, Francisco J. ;
Winkler, Daniel ;
Griesser, Christoph ;
Climent, Victor ;
Feliu, Juan M. ;
Kunze-Liebhaeuser, Julia .
ACS CATALYSIS, 2021, 11 (16) :10324-10332
[3]   New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared, and Raman spectroscopies [J].
Bantignies, J. L. ;
Deabate, S. ;
Righi, A. ;
Rols, S. ;
Hermet, P. ;
Sauvajol, J. L. ;
Henn, F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (06) :2193-2201
[4]   Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl- [J].
Butcher, Dennis P., Jr. ;
Gewirth, Andrew A. .
NANO ENERGY, 2016, 29 :457-465
[5]   Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst [J].
Chen, Feng-Yang ;
Wu, Zhen-Yu ;
Gupta, Srishti ;
Rivera, Daniel J. ;
Lambeets, Sten, V ;
Pecaut, Stephanie ;
Kim, Jung Yoon Timothy ;
Zhu, Peng ;
Finfrock, Y. Zou ;
Meira, Debora Motta ;
King, Graham ;
Gao, Guanhui ;
Xu, Wenqian ;
Cullen, David A. ;
Zhou, Hua ;
Han, Yimo ;
Perea, Daniel E. ;
Muhich, Christopher L. ;
Wang, Haotian .
NATURE NANOTECHNOLOGY, 2022, 17 (07) :759-+
[6]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[7]   Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts [J].
Danilovic, N. ;
Subbaraman, Ram ;
Strmcnik, D. ;
Chang, Kee-Chul ;
Paulikas, A. P. ;
Stamenkovic, V. R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (50) :12495-12498
[8]   Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy [J].
Debbichi, L. ;
de Lucas, M. C. Marco ;
Pierson, J. F. ;
Krueger, P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (18) :10232-10237
[9]   Direct observation of bicarbonate and water reduction on gold: understanding the potential dependent proton source during hydrogen evolution [J].
Deng, Gang-Hua ;
Zhu, Quansong ;
Rebstock, Jaclyn ;
Neves-Garcia, Tomaz ;
Baker, L. Robert .
CHEMICAL SCIENCE, 2023, 14 (17) :4523-4531
[10]   Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide [J].
Deng, Wanyu ;
Zhang, Peng ;
Seger, Brian ;
Gong, Jinlong .
NATURE COMMUNICATIONS, 2022, 13 (01)