High precision determination of the gluon fusion Higgs boson cross-section at the LHC

被引:0
作者
Charalampos Anastasiou
Claude Duhr
Falko Dulat
Elisabetta Furlan
Thomas Gehrmann
Franz Herzog
Achilleas Lazopoulos
Bernhard Mistlberger
机构
[1] ETH Zürich,Institute for Theoretical Physics
[2] CERN,Theoretical Physics Department
[3] Université catholique de Louvain,Center for Cosmology, Particle Physics and Phenomenology (CP3)
[4] Universität Zürich,Physik
[5] Nikhef,Institut
来源
Journal of High Energy Physics | / 2016卷
关键词
Higgs Physics; Perturbative QCD;
D O I
暂无
中图分类号
学科分类号
摘要
We present the most precise value for the Higgs boson cross-section in the gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion through N3LO in QCD, in an effective theory where the top-quark is assumed to be infinitely heavy, while all other Standard Model quarks are massless. We combine this result with QCD corrections to the cross-section where all finite quark-mass effects are included exactly through NLO. In addition, electroweak corrections and the first corrections in the inverse mass of the top-quark are incorporated at three loops. We also investigate the effects of threshold resummation, both in the traditional QCD framework and following a SCET approach, which resums a class of π2 contributions to all orders. We assess the uncertainty of the cross-section from missing higher-order corrections due to both perturbative QCD effects beyond N3LO and unknown mixed QCD-electroweak effects. In addition, we determine the sensitivity of the cross-section to the choice of parton distribution function (PDF) sets and to the parametric uncertainty in the strong coupling constant and quark masses. For a Higgs mass of mH = 125 GeV and an LHC center-of-mass energy of 13 TeV, our best prediction for the gluon fusion cross-section is σ=48.58pb−3.27pb+2.22pbtheory±1.56pb3.20%PDF+αs.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma =48.58\;{\mathrm{pb}}_{-3.27\;\mathrm{p}\mathrm{b}}^{+2.22\;\mathrm{p}\mathrm{b}}\left(\mathrm{theory}\right)\pm 1.56\;\mathrm{p}\mathrm{b}\left(3.20\%\right)\left(\mathrm{P}\mathrm{D}\mathrm{F}+{\alpha}_s\right). $$\end{document}
引用
收藏
相关论文
共 334 条
[1]  
Georgi HM(1978)Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions Phys. Rev. Lett. 40 692-undefined
[2]  
Glashow SL(1991)Radiative corrections to Higgs boson production Nucl. Phys. B 359 283-undefined
[3]  
Machacek ME(1993)QCD corrections to Higgs boson production at proton proton colliders Phys. Rev. Lett. 70 1372-undefined
[4]  
Nanopoulos DV(1991)Production of Higgs bosons in proton colliders: QCD corrections Phys. Lett. B 264 440-undefined
[5]  
Dawson S(1995)Higgs boson production at the LHC Nucl. Phys. B 453 17-undefined
[6]  
Graudenz D(2005)Higgs production and decay: Analytic results at next-to-leading order QCD JHEP 12 015-undefined
[7]  
Spira M(2007)Analytic Results for Virtual QCD Corrections to Higgs Production and Decay JHEP 01 021-undefined
[8]  
Zerwas PM(2007)Scalar particle contribution to Higgs production via gluon fusion at NLO JHEP 11 095-undefined
[9]  
Djouadi A(2007)Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop JHEP 01 082-undefined
[10]  
Spira M(2009)HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses JHEP 10 068-undefined