Consistent and asymptotically normal estimators for cyclically time-dependent linear models

被引:11
作者
Abdelouahab Bibi
Christian Francq
机构
[1] Université Mentouri de Constantine,Département de Mathématiques
[2] Université du Littoral-Côte d’Opale,LMPA Joseph Liouville, Centre Universitaire de la Mi
关键词
Time varying models; nonstationary processes; quasi-generalized least squares estimator; consistency; asymptotic normality;
D O I
10.1007/BF02530484
中图分类号
学科分类号
摘要
We consider a general class of time series linear models where parameters switch according to a known fixed calendar. These parameters are estimated by means of quasi-generalized least squares estimators. conditions for strong consistency and asymptotic normality are given. Applications to cyclical ARMA models with non constant periods are considered.
引用
收藏
页码:41 / 68
页数:27
相关论文
共 46 条
  • [1] Adams G. J.(1995)Parameter estimation for periodic ARMA models J. Time Ser. Anal. 16 127-146
  • [2] Goodwin G. C.(2000)An extension problem for discrete-time almost periodically correlated stochastic processes Linear Algebra Appl. 308 163-181
  • [3] Alpay D.(2001)An extension problem for discrete-time periodically correlated stochastic processes J. Time Ser. Anal. 22 1-11
  • [4] Freydin B.(1983)Asymptotic results for periodic autoregressive movingaverage processes J. Time Ser. Anal. 14 1-18
  • [5] Loubaton Ph.(2001)Large sample properties of parameter estimates for periodic ARMA models J. Time Ser. Anal. 22 551-663
  • [6] Alpay D.(1993)On the invertibility of periodic moving-average models J. Time Ser. Anal. 15 262-268
  • [7] Chevreuil A.(1949)Applications of least squares regression to relationships containing autocorrelated error terms J. Amer. Statist. Assoc. 44 32-61
  • [8] Loubaton Ph.(1997)Fitting time series models to nonstationary processes Ann. Statist. 25 1-37
  • [9] Anderson P. L.(1998)On threshold moving-average models J. Time Ser. Anal. 19 1-18
  • [10] Vecchia A. V.(1996)Random sampling estimation for almost periodically correlated processes J. Time Ser. Anal. 17 425-445