Limit Laws for R-diagonal Variables in a Tracial Probability Space

被引:0
作者
Cong Zhou
机构
[1] University of Mississippi,Department of Mathematics
来源
Integral Equations and Operator Theory | 2022年 / 94卷
关键词
Free probability; Limit laws; -diagonal; Primary 46L53; 60E07; Secondary 60E10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the weak convergence of sums of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${*}$$\end{document}-free, identically distributed tracial R-diagonal variables. The result parallels earlier results about free additive convolution on the real line. In particular, we determine under which conditions an infinitesimal array yields a sequence that converges to a given infinitely divisible tracial R-diagonal distribution. Thus, much of the work concerning sums of free (in the sense of Voiculescu) identically distributed positive random variables can be translated to the tracial R-diagonal context.
引用
收藏
相关论文
共 11 条
[1]  
Bercovici H(1999)Stable laws and domains of attraction in free probability theory Ann. Math. 149 1023-1060
[2]  
Pata V(1992)Lévy–Hinčin type theorems for multiplicative and additive free convolution Pac. J. Math. 153 217-248
[3]  
Biane P(1993)Free convolution of measures with unbounded support Indiana Univ. Math. J. 42 733-773
[4]  
Bercovici H(1992)Addition of freely independent random variables J. Funct. Anal. 106 409-438
[5]  
Voiculescu D(1997)-diagonal pairs-a common approach to Haar unitaries and circular elements, in free probability theory Fields Inst. Commun. 12 149-188
[6]  
Bercovici H(1986)Addition of certain non-commuting random variables J. Funct. Anal. 66 323-346
[7]  
Voiculescu D(undefined)undefined undefined undefined undefined-undefined
[8]  
Maassen H(undefined)undefined undefined undefined undefined-undefined
[9]  
Nica A(undefined)undefined undefined undefined undefined-undefined
[10]  
Speicher R(undefined)undefined undefined undefined undefined-undefined