Infimal Convolution and Optimal Time Control Problem II: Limiting Subdifferential

被引:0
作者
Grigorii E. Ivanov
Lionel Thibault
机构
[1] Moscow Institute of Physics and Technology,Institut Montpelliérain Alexander Grothendieck
[2] Université de Montpellier,Centro de Modelamiento Matematico
[3] Universidad de Chile,undefined
来源
Set-Valued and Variational Analysis | 2017年 / 25卷
关键词
Fréchet subdifferential; Mordukhovich limiting subdifferential; Minimal time function; Minimal time projection; Infimal convolution; Lower regular function; Primary 49J52, 46N10, 58C20; Secondary 28B20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the continuation of our study of a general minimal time problem with a convex constant dynamics and a lower semicontinuous extended real-valued target function defined on a Banach space. We study several properties of the limiting subdifferential for the infimum time function and we provide explicit expressions of the limiting subdifferential. Necessary and sufficient conditions for the infimum time function to be lower regular are presented. The sharpness of assumptions is shown through diverse examples.
引用
收藏
页码:517 / 542
页数:25
相关论文
共 34 条
  • [1] Alvarez O(2000)Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem SIAM J. Control Optim. 38 470-481
  • [2] Koike S(2004)Subsmooth sets: functional characterizations and related concepts Trans. Amer. Math. Soc. 357 1275-1301
  • [3] Nakayama I(2002)On various notions of regularity of sets in nonsmooth analysis Nonlinear Anal. 48 223-246
  • [4] Aussel D(2010)Well-posedness of minimal time problem with constant dynamics in Banach space Set-Valued Var. Anal. 18 349-372
  • [5] Daniilidis A(2004)The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space J. Global Optim. 28 269-282
  • [6] Thibault L(2004)Variational analysis for a class of minimal time functions in Hilbert spaces J. Convex Anal. 11 335-361
  • [7] Bounkhel M(1998)On a generalized best approximation problem J. Approx. Theory 94 96-108
  • [8] Thibault L(1979)Nonconvex minimization problems Bull. Amer. Math. Soc. 224 432-467
  • [9] Colombo G(2006)Subdifferentials of a minimum time function in Banach spaces J. Math. Anal. Appl. 321 896-910
  • [10] Goncharov VV(2002)Derivatives of generalized functions and existence of generalized nearest points J. Approx. Theory 115 44-55