Measuring a dynamical topological order parameter in quantum walks

被引:0
作者
Xiao-Ye Xu
Qin-Qin Wang
Markus Heyl
Jan Carl Budich
Wei-Wei Pan
Zhe Chen
Munsif Jan
Kai Sun
Jin-Shi Xu
Yong-Jian Han
Chuan-Feng Li
Guang-Can Guo
机构
[1] CAS Key Laboratory of Quantum Information,
[2] University of Science and Technology of China,undefined
[3] CAS Center for Excellence in Quantum Information and Quantum Physics,undefined
[4] University of Science and Technology of China,undefined
[5] Max-Planck-Institut für Physik komplexer Systeme,undefined
[6] Institute of Theoretical Physics,undefined
[7] Technische Universität Dresden,undefined
来源
Light: Science & Applications | / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum processes of inherent dynamical nature, such as quantum walks, defy a description in terms of an equilibrium statistical physics ensemble. Until now, identifying the general principles behind the underlying unitary quantum dynamics has remained a key challenge. Here, we show and experimentally observe that split-step quantum walks admit a characterization in terms of a dynamical topological order parameter (DTOP). This integer-quantized DTOP measures, at a given time, the winding of the geometric phase accumulated by the wavefunction during a quantum walk. We observe distinct dynamical regimes in our experimentally realized quantum walks, and each regime can be attributed to a qualitatively different temporal behavior of the DTOP. Upon identifying an equivalent many-body problem, we reveal an intriguing connection between the nonanalytic changes of the DTOP in quantum walks and the occurrence of dynamical quantum phase transitions.
引用
收藏
相关论文
共 84 条
[1]  
Anderson PW(1958)Absence of diffusion in certain random lattices Phys. Rev. 109 1492-1505
[2]  
Islam R(2015)Measuring entanglement entropy in a quantum many-body system Nature 528 77-83
[3]  
Kaufman AM(2016)Quantum thermalization through entanglement in an isolated many-body system Science 353 794-800
[4]  
Simon B(1989)Holonomy, the quantum adiabatic theorem, and berry’s phase Phys. Rev. Lett. 51 2167-2170
[5]  
Berry MV(1984)Quantal phase factors accompanying adiabatic changes Proc. R. Soc. A Math. Phys. Eng. Sci. 392 45-57
[6]  
Xu JS(2016)Simulating the exchange of Majorana zero modes with a photonic system Nat. Commun. 7 124-130
[7]  
Eisert J(2015)Quantum many-body systems out of equilibrium Nat. Phys. 11 1687-1690
[8]  
Friesdorf M(1993)Quantum random walks Phys. Rev. A 48 180501-794
[9]  
Gogolin C(2009)Universal computation by quantum walk Phys. Rev. Lett. 102 791-58
[10]  
Aharonov Y(2013)Universal computation by multiparticle quantum walk Science 339 022307-1233