A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems

被引:0
作者
Marco Sansottera
Ugo Locatelli
Antonio Giorgilli
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
[2] Università degli Studi di Roma “Tor Vergata”,Dipartimento di Matematica
来源
Celestial Mechanics and Dynamical Astronomy | 2011年 / 111卷
关键词
KAM theory; Lower dimensional invariant tori; Normal form methods; n-body planetary problem; Hamiltonian systems; Celestial Mechanics; Primary: 37J40; Secondary: 37N05; 70F10; 70–08; 70H08;
D O I
暂无
中图分类号
学科分类号
摘要
We adapt the Kolmogorov’s normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant elliptic torus. As a byproduct, our procedure can also provide some analytic expansions of the motions on elliptic tori. By extensively using algebraic manipulations on a computer, we explicitly apply our method to a planar four-body model not too different with respect to the real Sun–Jupiter–Saturn–Uranus system. The frequency analysis method allows us to check that our location of the initial conditions on an invariant elliptic torus is really accurate.
引用
收藏
相关论文
共 56 条
[1]  
Benettin G.(1984)A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method Nuovo Cimento 79 201-223
[2]  
Galgani L.(2003)Elliptic two-dimensional invariant tori for the planetary three-body problem Arch. Ration. Mech. Anal. 170 91-135
[3]  
Giorgilli A.(2006)N-dimensional elliptic invariant tori for the planar (N+1)-body problem SIAM J. Math. Anal. 37 1560-1588
[4]  
Strelcyn J.M.(2000)On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem Celest. Mech. Dyn. Astron. 76 35-54
[5]  
Biasco L.(2000)Improved estimates on the existence of invariant tori for Hamiltonian systems Nonlinearity 13 397-412
[6]  
Chierchia L.(1983)Elimination of the nodes in problems of Celest. Mech. Dyn. Astron. 30 181-195
[7]  
Valdinoci E.(2001) bodies DCDS-B 1 143-182
[8]  
Biasco L.(2005)A restricted four-body model for the dynamics near the Lagrangian points of the Sun–Jupiter system Nonlinearity 18 1705-1734
[9]  
Chierchia L.(1997)On the construction of the Kolmogorov normal form for the Trojan asteroids J. App. Math. Phys. (ZAMP) 48 220-261
[10]  
Valdinoci E.(1997)Kolmogorov theorem and classical perturbation theory MPEJ 3 1-25