Asymptotic theory of high-efficiency converters of higher-order waveguide modes into eigenwaves of open mirror lines

被引:62
作者
Bogdashov A.A. [1 ]
Denisov G.G. [1 ]
机构
[1] Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod
关键词
Numerical Calculation; Bessel Function; Transmission Line; Direct Relationship; Analytical Theory;
D O I
10.1023/B:RAQE.0000047649.17664.6e
中图分类号
学科分类号
摘要
Based on the Debye asymptotic for Bessel functions, we develop an analytical theory of high-efficiency converters of higher-order waveguide modes into eigenwaves of open mirror transmission lines. Simple analytical formulas for the parameters of the basic types of mirror lines are derived. Direct relationship between the nonequidistance of mode wavenumbers, the diffraction lengths of the Brillouin wave beams, and the lengths of converters for oversized waveguides is shown. The results of numerical calculations for some converters are presented for comparison. © 2004 Plenum Publishing Corporation.
引用
收藏
页码:283 / 296
页数:13
相关论文
共 18 条
[1]  
Gaponov-Grekhov A.V., Granatstein V.L., Novel Application of High Power Microwaves, (1994)
[2]  
Thumm M., State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, Forschungcentrum, Karlsruhe, (2003)
[3]  
Felch K.L., Danly B.G., Jory H.R., Et al., Proc. IEEE, 87, 5, (1999)
[4]  
Denisov G.G., Zapevalov V.E., Litvak A.G., Myasnikov V.E., Radiophys. Quantum Electron., 46, 10, (2003)
[5]  
Vinogradov D.V., Denisov G.G., Petelin M.I., In: Proc. 10Th Workshop on Diffraction and Propagation of Waves [In Russian], (1993)
[6]  
Denisov G.G., Kuftin A.N., Malygin V.I., Et al., Int. J. Electronics, 72, Nos., 1079, pp. 5-6, (1992)
[7]  
Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge Univ, (1966)
[8]  
Vainshtein L.A., Open Resonators and Open Wavequides, (1969)
[9]  
Babich V.M., Buldyrev V.S., Short-Wavelength Diffraction Theory. Asymptotic Methods, (1991)
[10]  
Vlasov S.N., Orlova I.M., Radiophys. Quantum Electron., 17, 1, (1974)