Extremal Shift Rule and Viability Property for Mean Field-Type Control Systems

被引:0
作者
Yurii Averboukh
Antonio Marigonda
Marc Quincampoix
机构
[1] Krasovskii Institute of Mathematics and Mechanics,Department of Computer Science
[2] Ural Federal University,UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique
[3] Higher School of Economics,undefined
[4] University of Verona,undefined
[5] Univ Brest,undefined
来源
Journal of Optimization Theory and Applications | 2021年 / 189卷
关键词
Mean field-type control; Viability; Proximal normal distribution; Extremal shift; 49N35; 93B52; 93C10; 93A14; 28A33;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate when a mean field-type control system can fulfill a given constraint. Namely, given a closed set of probability measures on the torus, starting from any initial probability measure belonging to this set, does there exist a solution to the mean field control system remaining in it for any time? This property—the so-called viability property—is equivalently characterized through a property involving normals to the given set of probability measures. We prove that, if the Hamiltonian is nonpositive at any normal distribution to the given set, then the feedback strategy realizing the extremal shift rule provides the approximate viability. This implies the usual viability property. Conversely, the Hamiltonian is nonpositive at any normal distribution if the given set is viable. Our approach enables us to derive generalized feedback laws which ensure the trajectory to fulfill the constraint. This generalized feedback called here extremely shift rule is inspired by constructive motions developed by Krasovskii and Subbotin for differential games.
引用
收藏
页码:244 / 270
页数:26
相关论文
共 39 条
  • [1] Barron E(1990)Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex hamiltonians Commun. Partial Differ. Equ. 15 1713-1742
  • [2] Jensen R(1993)Lower semicontinuous solutions of Hamilton–Jacobi–Bellman equation SIAM J. Control Optim. 31 257-272
  • [3] Frankowska H(1942)Über die lage der integralkurven gewühnlicher differentialgleichungen Proc. Phys. Math. Soc. Jpn. 24 551-559
  • [4] Nagumo M(1969)Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés Ann. Inst. Fourier Grenoble 19 277-304
  • [5] Bony JM(1977)Monotone invariant solutions to differential inclusions J. Lond. Math. Soc. 16 357-366
  • [6] Clarke FH(1972)A generalization of Peano’s existence theorem and flow invariance Proc. Am. Math. Soc. 36 151-155
  • [7] Aubin JP(1993)Sufficient conditions for viability under imperfect measurement Set Valued Anal. 1 305-317
  • [8] Crandall MG(1998)Existence of stochastic control under state constraints C. R. Acad. Sci. Paris Sér. I Math. 327 17-22
  • [9] Veliov VM(1997)Approximate invariance and differential inclusions in hilbert spaces J. Dyn. Control Syst. 3 493-518
  • [10] Buckdahn R(2009)Necessary and sufficient conditions for viability for semilinear differential inclusions Trans. Am. Math. Soc. 361 343-390