Polák theorem and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document}-relation on varieties of completely regular semigroups

被引:0
作者
Mario Petrich
机构
关键词
Semigroup; Completely regular; Polák’s theorem; Canonical variety; Meet; Join; Lattice;
D O I
10.1007/s00233-017-9849-6
中图分类号
学科分类号
摘要
Completely regular semigroups CR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}\mathcal {R}$$\end{document} are unions of their subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by L(CR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\mathcal {C}\mathcal {R})$$\end{document}. The Polák theorem concerns the computation of joins in L(CR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\mathcal {C}\mathcal {R})$$\end{document}. The B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document}-relation on L(CR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\mathcal {C}\mathcal {R})$$\end{document} identifies varieties with the same bands. We elaborate upon two nontrivial conditions in Polák’s theorem applied to certain subsets of CR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}\mathcal {R}$$\end{document} which amounts to solving particular equations in L(CR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\mathcal {C}\mathcal {R})$$\end{document}.
引用
收藏
页码:371 / 389
页数:18
相关论文
共 11 条
  • [1] Gerhard JA(1988)Certain characterizations of varieties of bands Proc. Edimb. Math. Soc. 31 301-319
  • [2] Petrich M(1989)Varieties of bands revisited Proc. Lond. Math. Soc 58 323-350
  • [3] Gerhard JA(1989)On the word problem for bands of groups and free objects of some other varieties of completely regular semigroups Semigroup Forum 38 1-53
  • [4] Petrich M(2007)Canonical varieties of completely simple semigroups J. Aust. Math. Soc. 83 87-104
  • [5] Kad̆ourek J(2015)Varieties of completely regular semigroups related to canonical varieties Semigroup Forum 90 53-99
  • [6] Petrich M(1990)Operators related to J. Algebra 134 1-23
  • [7] Petrich M(1985)-disjunctive and fundamental completely regular semigroups Semigroup Forum 32 97-123
  • [8] Petrich M(1987)On varieties of completely regular semigroups I Semigroup Forum 36 253-284
  • [9] Reilly NR(undefined)On varieties of completely regular semigroups II undefined undefined undefined-undefined
  • [10] Polák L(undefined)undefined undefined undefined undefined-undefined