Adaptive finite element for semi-linear convection–diffusion problems

被引:0
作者
L. Pouly
J. Pousin
机构
[1] Swiss Federal Institute of Technology,Department of Mathematics
[2] National Institute of Applied Sciences in Lyon,Mathematical Modelling and Scientific Computing Laboratory, UMR CNRS 5585
来源
Advances in Computational Mathematics | 1997年 / 7卷
关键词
numerical analysis; nonlinear; elliptic equations; finite element; error estimates; 35K55; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article a strategy of adaptive finite element for semi-linear problems, based on minimizing a residual-type estimator, is reported. We get an a posteriori error estimate which is asymptotically exact when the mesh size h tends to zero. By considering a model problem, the quality of this estimator is checked. It is numerically shown that without constraint on the mesh size h, the efficiency of the a posteriori error estimate can fail dramatically. This phenomenon is analysed and an algorithm which equidistributes the local estimators under the constraint h ⩽ hmax is proposed. This algorithm allows to improve the computed solution for semi-linear convection–diffusion problems, and can be used for stabilizing the Lagrange finite element method for linear convection–diffusion problems.
引用
收藏
页码:235 / 259
页数:24
相关论文
共 24 条
[1]  
Babuška I.(1978)Error estimates for adaptive finite element computations SIAM J. Numer. Anal. 15 736-754
[2]  
Rheinboldt W.C.(1979)Analysis of optimal finite element meshes in ℝ Math. Comp. 36 435-463
[3]  
Babuška I.(1981)A posteriori error analysis of finite element solutions for one-dimensional problems SIAM J. Numer. Anal. 18 565-589
[4]  
Rheinboldt W.C.(1993)The problem of the selection of an a posteriori error indicator based on smoothening techniques Internat. J. Numer. Methods Engrg. 36 539-567
[5]  
Babuška I.(1984)Adaptivity and error estimation for the finite element method applied to convection-diffusion problems SIAM J. Numer. Anal. 21 910-954
[6]  
Rheinboldt W.C.(1991)A posteriori error estimates for the adaptive computation of quasi non newtonian flows M2 AN 25 31-48
[7]  
Babuška I.(1987)Extinction limits for premixed laminar flames in a stagnation point flow J. Comput. Phys. 68 327-345
[8]  
Rodriguez R.(1982)On the existence of positive solutions of semilinear equations SIAM Reviews 24 441-467
[9]  
Babuška I.(1991)Consistance, stabilité, erreurs a priori et a posteriori pour des problèmes non linéaires C. R. Acad. Sci. Paris Sér. I Math. 312 699-703
[10]  
Szmczak W.G.(1994)Consistency, stability, a priori and a posteriori errors estimates for nonlinear problems Numer. Math. 69 213-232