Growth of generalized Temperley–Lieb algebras connected with simple graphs

被引:0
作者
M. V. Zavodovskii
Yu. S. Samoilenko
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2009年 / 61卷
关键词
Exponential Growth; Linear Growth; Algebra Associate; Group Algebra; Simple Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the generalized Temperley–Lieb algebras associated with simple graphs Γ have linear growth if and only if the graph Γ coincides with one of the extended Dynkin graphs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde A_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde D_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde E_6} $$\end{document}, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde E_7} $$\end{document}. An algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T{L_{\Gamma, \tau }} $$\end{document} has exponential growth if and only if the graph Γ coincides with none of the graphs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {A_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {E_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde A_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde D_n} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde E_6} $$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde E_7} $$\end{document}.
引用
收藏
页码:1858 / 1864
页数:6
相关论文
共 6 条
  • [1] Temperley H. N. V.(1971)Relations between ‘percolations’ and ‘colouring’ problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem J. Proc. Roy. Soc. London, Ser. A 322 251-280
  • [2] Lieb E. H.(1983)Index for subfactor Invent. Math. 72 1-15
  • [3] Jones VF(1997)Structure of a Hecke algebra quotient J. AMS 10 139-167
  • [4] Fan CK(1998)Cellular algebras arising from Hecke algebras of type Hn Math. Z. 229 365-383
  • [5] Green RM(1998)Generalized Temperley–Lieb algebras and decorated tangles J. Knot Theory Ramif. 7 155-171
  • [6] Green RM(undefined)undefined undefined undefined undefined-undefined