A fuzzy spatial description logic for the semantic web

被引:0
作者
Haitao Cheng
Zongmin Ma
Peng Li
机构
[1] Nanjing University of Posts and Telecommunications,School of Computer Science
[2] Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,College of Computer Science and Technology
[3] Nanjing University of Aeronautics and Astronautics,undefined
来源
Journal of Ambient Intelligence and Humanized Computing | 2022年 / 13卷
关键词
Decision procedure; Semantic Web; Description logics; Fuzzy spatial reasoning;
D O I
暂无
中图分类号
学科分类号
摘要
Spatial information is a critical feature in a large number of application domains. Spatial information, however, is often not crisp but with the nature of imprecision and fuzziness. As the increasing requirements of spatial applications, there emerges many challenges regarding to the representation and reasoning of spatial knowledge. Description logic (DL) is a logical basis for representing knowledge and realizing reasoning tasks in the Semantic Web. Therefore, how to extend DL to achieve the goal of representing and reasoning fuzzy spatial knowledge needs to be settled. In this work, we study a fuzzy spatial extension of the well known fuzzy ALC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {ALC}$$\end{document} DL to reason fuzzy spatial knowledge. First, we construct a fuzzy spatial concrete domain S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} which is comprised of fuzzy spatial regions and fuzzy RCC relationships. More importantly, we give the admissibility proof of fuzzy spatial concrete domain S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}. Then we extend fuzzy ALC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {ALC}$$\end{document} with an admissible fuzzy spatial concrete domain S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} and present a fuzzy spatial description logic f-ALC(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {ALC}}({\mathcal S})$$\end{document}. Finally, we address a decision procedure for f-ALC(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {ALC}}({\mathcal S})$$\end{document} ABox consistency problem. Also, we show that the decision procedure is correct and the consistency problem for f-ALC(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {ALC}}({\mathcal S})$$\end{document} is decidable in PSPACE-complete.
引用
收藏
页码:4991 / 5009
页数:18
相关论文
共 78 条
[1]  
Belussi A(2012)A framework for integrating multi-accuracy spatial data in geographical applications Geoinformatica 16 523-561
[2]  
Migliorini S(2009)Fuzzy description logics with general t-norms and datatypes Fuzzy Sets Syst 160 3382-3402
[3]  
Bobillo F(2011)On the failure of the finite model property in some fuzzy description logics Fuzzy Sets Syst 172 1-12
[4]  
Straccia U(2016)Modeling and querying fuzzy spatiotemporal objects J Intell Fuzzy Syst 31 2851-2858
[5]  
Bobillo F(2019)Representing and reasoning fuzzy spatio-temporal knowledge with description logics: a survey Intell Data Anal 23 113-132
[6]  
Bou F(2019)Fuzzy spatio-temporal ontologies and formal construction based on fuzzy petri nets Comput Intell 35 204-239
[7]  
Straccia U(2020)Maclaurin symmetric mean aggregation operators based on t-norm operations for the dual hesitant fuzzy soft set J Ambient Intell Hum Comput 11 375-410
[8]  
Cheng H(1999)A description logic with concrete domains and a role-forming predicate operator J Log Comput 9 351-384
[9]  
Cheng H(2005)Making fuzzy description logic more general Fuzzy Sets Syst 154 1-15
[10]  
Wang R(1984)A new polynomial-time algorithm for linear programming Combinatorica 4 373-395