Hybrid High-Order Methods for the Acoustic Wave Equation in the Time Domain

被引:0
作者
Erik Burman
Omar Duran
Alexandre Ern
机构
[1] University College London,Department of Mathematics
[2] CERMICS,undefined
[3] Ecole des Ponts,undefined
[4] INRIA Paris,undefined
来源
Communications on Applied Mathematics and Computation | 2022年 / 4卷
关键词
Hybrid high-order methods; Wave equation; Newmark scheme; Runge-Kutta scheme; 65M22; 65M12; 65M60; 35L05;
D O I
暂无
中图分类号
学科分类号
摘要
We devise hybrid high-order (HHO) methods for the acoustic wave equation in the time domain. We first consider the second-order formulation in time. Using the Newmark scheme for the temporal discretization, we show that the resulting HHO-Newmark scheme is energy-conservative, and this scheme is also amenable to static condensation at each time step. We then consider the formulation of the acoustic wave equation as a first-order system together with singly-diagonally implicit and explicit Runge-Kutta (SDIRK and ERK) schemes. HHO-SDIRK schemes are amenable to static condensation at each time step. For HHO-ERK schemes, the use of the mixed-order formulation, where the polynomial degree of the cell unknowns is one order higher than that of the face unknowns, is key to benefit from the explicit structure of the scheme. Numerical results on test cases with analytical solutions show that the methods can deliver optimal convergence rates for smooth solutions of order O(hk+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(h^{k+1})$$\end{document} in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm and of order O(hk+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(h^{k+2})$$\end{document} in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. Moreover, test cases on wave propagation in heterogeneous media indicate the benefits of using high-order methods.
引用
收藏
页码:597 / 633
页数:36
相关论文
共 121 条
[11]  
Hagstrom T(2010)Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems SIAM J. Numer. Anal. 48 2019-2042
[12]  
Ayuso de Dios B(2019)Spectral approximation of elliptic operators by the hybrid high-order method Math. Comput. 88 1559-1586
[13]  
Lipnikov K(2018)Hybrid discretization methods with adaptive yield surface detection for Bingham pipe flows J. Sci. Comput. 77 1424-1443
[14]  
Manzini G(2014)Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media J. Comput. Phys. 272 88-107
[15]  
Banks JW(2006)Optimal discontinuous Galerkin methods for wave propagation SIAM J. Numer. Anal. 44 2131-2158
[16]  
Hagstrom T(2018)Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming J. Comput. Appl. Math. 344 852-874
[17]  
Jacangelo J(2016)Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods ESAIM Math. Model Numer. Anal. 50 635-650
[18]  
Bécache E(2018)Stormer-Numerov HDG methods for acoustic waves J. Sci. Comput. 75 597-624
[19]  
Joly P(2009)Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems SIAM J. Numer. Anal. 47 1319-1365
[20]  
Tsogka C(2001)Higher order triangular finite elements with mass lumping for the wave equation SIAM J. Numer. Anal. 38 2047-2078