Hybrid High-Order Methods for the Acoustic Wave Equation in the Time Domain

被引:0
作者
Erik Burman
Omar Duran
Alexandre Ern
机构
[1] University College London,Department of Mathematics
[2] CERMICS,undefined
[3] Ecole des Ponts,undefined
[4] INRIA Paris,undefined
来源
Communications on Applied Mathematics and Computation | 2022年 / 4卷
关键词
Hybrid high-order methods; Wave equation; Newmark scheme; Runge-Kutta scheme; 65M22; 65M12; 65M60; 35L05;
D O I
暂无
中图分类号
学科分类号
摘要
We devise hybrid high-order (HHO) methods for the acoustic wave equation in the time domain. We first consider the second-order formulation in time. Using the Newmark scheme for the temporal discretization, we show that the resulting HHO-Newmark scheme is energy-conservative, and this scheme is also amenable to static condensation at each time step. We then consider the formulation of the acoustic wave equation as a first-order system together with singly-diagonally implicit and explicit Runge-Kutta (SDIRK and ERK) schemes. HHO-SDIRK schemes are amenable to static condensation at each time step. For HHO-ERK schemes, the use of the mixed-order formulation, where the polynomial degree of the cell unknowns is one order higher than that of the face unknowns, is key to benefit from the explicit structure of the scheme. Numerical results on test cases with analytical solutions show that the methods can deliver optimal convergence rates for smooth solutions of order O(hk+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(h^{k+1})$$\end{document} in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm and of order O(hk+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(h^{k+2})$$\end{document} in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. Moreover, test cases on wave propagation in heterogeneous media indicate the benefits of using high-order methods.
引用
收藏
页码:597 / 633
页数:36
相关论文
共 121 条
[1]  
Abbas M(2018)Hybrid high-order methods for finite deformations of hyperelastic materials Comput. Mech. 62 909-928
[2]  
Ern A(2019)A hybrid high-order method for incremental associative plasticity with small deformations Comput. Methods Appl. Mech. Eng. 346 891-912
[3]  
Pignet N(2018)High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form J. Comput. Phys. 352 534-567
[4]  
Abbas M(2015)A new discontinuous Galerkin formulation for wave equations in second-order form SIAM J. Numer. Anal. 53 2705-2726
[5]  
Ern A(2016)The nonconforming virtual element method ESAIM Math. Model. Numer. Anal. 50 879-904
[6]  
Pignet N(2018)Galerkin differences for acoustic and elastic wave equations in two space dimensions J. Comput. Phys. 372 864-892
[7]  
Angel JB(2000)An analysis of new mixed finite elements for the approximation of wave propagation problems SIAM J. Numer. Anal. 37 1053-1084
[8]  
Banks JW(2019)A hybrid high-order method for the incompressible Navier-Stokes equations based on Temam’s device J. Comput. Phys. 376 786-816
[9]  
Henshaw WD(2017)A hybrid high-order method for nonlinear elasticity SIAM J. Numer. Anal. 55 2687-2717
[10]  
Appelö D(2018)An unfitted hybrid high-order method for elliptic interface problems SIAM J. Numer. Anal. 56 1525-1546