Multiple nodal solutions for a class of Kirchhoff-type equations in high dimensions

被引:0
作者
He Zhang
Haibo Chen
机构
[1] Central South University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Kirchhoff equations; Nonlocal term; Nodal solution; Nehari manifold; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of nodal solutions for a class of Kirchhoff-type problem -a∫RN|∇u|2dx+bΔu+u=f(x)|u|p-2u,inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\left( a\int \limits _{{\mathbb {R}}^N}|\nabla u|^2\mathrm {d}x+b\right) \Delta {u}+u=f(x)|u|^{p-2}u,\quad \text {in}\, {\mathbb {R}}^N, \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,\ b >0$$\end{document}, N≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 4$$\end{document}, 2<p<2∗=2NN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<2^{*}=\frac{2N}{N-2}$$\end{document} and the positive continuous function f(x)∈L∞(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)\in L^{\infty }({\mathbb {R}}^N)$$\end{document}. Combining a novel constraint manifold method with the detailed energy estimates, we prove that the above problem admits a nodal solution when N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=4$$\end{document} while two nodal solutions with opposite energy level for corresponding action functional are achieved when N≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 5$$\end{document} by controlling the parameter a sufficiently small.
引用
收藏
相关论文
共 50 条
[1]  
Arosio A(1996)On the well-posedness of the Kirchhoff string Trans. Am. Math. Soc. 348 305-330
[2]  
Panizzi S(1983)A relation between pointwise convergence of functions and convergence of functionals Proc. Am. Math. Soc. 88 486-490
[3]  
Brézis H(2004)Minimal nodal solutions of the pure critical exponent problem on a symmetric domain Calc. Var. Partial Differ. Equ. 21 1-14
[4]  
Lieb EH(2011)The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions J. Differ. Equ. 250 1876-1908
[5]  
Clapp M(1992)Global solvability for the degenerate Kirchhoff equation with real analytic data Invent. Math. 108 247-262
[6]  
Weth T(2015)Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in J. Funct. Anal. 269 3500-3527
[7]  
Chen CY(2014)Existence and concentration result for the Kirchhoff-type equations with general nonlinearities Arch. Ration. Mech. Anal. 213 931-979
[8]  
Kuo YC(2012)Existence and concentration behavior of positive solutions for a Kirchhoff equation in J. Differ. Equ. 252 1813-1834
[9]  
Wu TF(2016)Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity J. Differ. Equ. 261 6178-6220
[10]  
D’Ancona P(2012)Existence of a positive solution to Kirchhoff type problems without compactness conditions J. Differ. Equ. 253 2285-2294