On Oikawa’s theorem from an algebraic and geometric point of view
被引:0
作者:
G. Gromadzki
论文数: 0引用数: 0
h-index: 0
机构:Instytut Matematyki UG,Departamento de Matemáticas Fundamentales
G. Gromadzki
E. Martínez
论文数: 0引用数: 0
h-index: 0
机构:Instytut Matematyki UG,Departamento de Matemáticas Fundamentales
E. Martínez
B. Mockiewicz
论文数: 0引用数: 0
h-index: 0
机构:Instytut Matematyki UG,Departamento de Matemáticas Fundamentales
B. Mockiewicz
机构:
[1] Instytut Matematyki UG,Departamento de Matemáticas Fundamentales
[2] UNED,Institute of Mathematics
[3] Kazimierz Wielki Academy of Bydgoszcz,undefined
来源:
Archiv der Mathematik
|
2003年
/
81卷
关键词:
20H10;
30F50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In 1956 K. Oikawa proved that a bordered compact Riemann surface
X of genus g
with k boundary components can be embedded into a
closed Riemann surface
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \widetilde{X} $$
\end{document}
of the same genus in such a way that its
complement consists in a disjoint union of k
discs and every automorphism of X
extends to an automorphism of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \widetilde{X} $$
\end{document}
. Much later, in 1982, N.
Greenleaf and C. L. May mention that the analytical arguments of Oikawa can
be extended to the case of nonorientable compact surfaces. Here we give a
new algebraic proof, based on the uniformization theorem, of a similar
result for Riemann and Klein surfaces, together with a geometric
interpretation that relates the geometry of fundamental regions for groups
uniformizing the surfaces X and
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \widetilde{X} $$
\end{document}
.