Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0

被引:0
|
作者
Minbo Yang
Wenxiong Chen
Yanheng Ding
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] AMSS,Institute of Mathematics
[3] Chinese Academy of Sciences,undefined
来源
Acta Applicandae Mathematicae | 2010年 / 110卷
关键词
Discrete Schrödinger equation; Standing waves; Nonlinear lattices; 35Q55; 35Q51; 39A12; 39A70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the discrete nonlinear equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u_{n}+\varepsilon_{n}u_{n}-\omega u_{n}=\sigma \chi_{n}g_{n}(u_{n})u_{n},$$\end{document} where σ=±1, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u_{n}=u_{n+1}+u_{n-1}-2u_{n}$$\end{document} is the discrete Laplacian in one spatial dimension. The sequences εn and χn are assumed to be N-periodic in n, i.e. εn+N=εn and χn+N=χn. We prove the existence of solutions in l2 for this equation with ω a lower edge of a finite spectral gap and the nonlinearities satisfying very general superlinear assumptions.
引用
收藏
页码:1475 / 1488
页数:13
相关论文
共 50 条
  • [1] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [2] Non-periodic discrete Schrödinger equations: ground state solutions
    Guanwei Chen
    Martin Schechter
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [3] Normalized solutions for the discrete Schrödinger equations
    Qilin Xie
    Huafeng Xiao
    Boundary Value Problems, 2023
  • [4] Solutions for Discrete Periodic Schrodinger Equations with Spectrum 0
    Yang, Minbo
    Chen, Wenxiong
    Ding, Yanheng
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1475 - 1488
  • [5] Ground state solutions for periodic discrete nonlinear Schrödinger equations with saturable nonlinearities
    Luyu Zhang
    Shiwang Ma
    Advances in Difference Equations, 2018
  • [6] ON THE PERIODIC SOLITON SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATIONS
    Ali, Rashid
    Kumar, Devendra
    Akguel, Ali
    Altalbe, Ali
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [7] Gap Solitons in Periodic Discrete Schrödinger Equations with Nonlinearity
    Haiping Shi
    Acta Applicandae Mathematicae, 2010, 109 : 1065 - 1075
  • [8] New Results for Periodic Discrete Nonlinear SchröDinger Equations
    Xu, Xiaoliang
    Chen, Huiwen
    Ouyang, Zigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5768 - 5780
  • [9] Multiple solutions to logarithmic Schrödinger equations with periodic potential
    Marco Squassina
    Andrzej Szulkin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 585 - 597
  • [10] Multiple solutions of discrete Schrödinger equations with growing potentials
    Liqian Jia
    Guanwei Chen
    Advances in Difference Equations, 2016