Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators

被引:0
作者
Yangyang Zhang
Dachun Yang
Wen Yuan
Songbai Wang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Hubei Normal University,College of Mathematics and Statistics
来源
Science China Mathematics | 2021年 / 64卷
关键词
ball quasi-Banach function space; weak Hardy space; Orlicz-slice space; maximal function; atom; molecule; Calderón-Zygmund operator; 42B30; 42B25; 42B20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space on ℝn. In this article, we introduce the weak Hardy-type space W HX(ℝn), associated with X, via the radial maximal function. Assuming that the powered Hardy-Littlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space, we then establish several real-variable characterizations of W HX (ℝn), respectively, in terms of various maximal functions, atoms and molecules. As an application, we obtain the boundedness of Calderón-Zygmund operators from the Hardy space HX (ℝn) to W HX (ℝn), which includes the critical case. All these results are of wide applications. Particularly, when X:=Mqp(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = M_q^p({\mathbb{R}^n})$$\end{document} (the Morrey space), X:=Lp→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = {L^{\vec p}}({\mathbb{R}^n})$$\end{document} (the mixed-norm Lebesgue space) and X:=(EΦq)t(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = {(E_\Phi ^q)_t}({^n})$$\end{document} (the Orlicz-slice space), which are all ball quasi-Banach function spaces rather than quasi-Banach function spaces, all these results are even new. Due to the generality, more applications of these results are predictable.
引用
收藏
页码:2007 / 2064
页数:57
相关论文
共 44 条
[41]   Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces [J].
Lin, Xiaosheng ;
Yang, Dachun ;
Yang, Sibei ;
Yuan, Wen .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) :484-514
[42]   Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces [J].
Xiaosheng Lin ;
Dachun Yang ;
Sibei Yang ;
Wen Yuan .
Acta Mathematica Scientia, 2024, 44 :484-514
[43]   Boundedness of Calderon-Zygmund operators on ball Campanato-type function spaces [J].
Chen, Yiqun ;
Jia, Hongchao ;
Yang, Dachun .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
[44]   Boundedness of Calderon-Zygmund operators on special John-Nirenberg-Campanato and Hardy-type spaces via congruent cubes [J].
Jia, Hongchao ;
Tao, Jin ;
Yang, Dachun ;
Yuan, Wen ;
Zhang, Yangyang .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)