Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators

被引:0
作者
Yangyang Zhang
Dachun Yang
Wen Yuan
Songbai Wang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Hubei Normal University,College of Mathematics and Statistics
来源
Science China Mathematics | 2021年 / 64卷
关键词
ball quasi-Banach function space; weak Hardy space; Orlicz-slice space; maximal function; atom; molecule; Calderón-Zygmund operator; 42B30; 42B25; 42B20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space on ℝn. In this article, we introduce the weak Hardy-type space W HX(ℝn), associated with X, via the radial maximal function. Assuming that the powered Hardy-Littlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space, we then establish several real-variable characterizations of W HX (ℝn), respectively, in terms of various maximal functions, atoms and molecules. As an application, we obtain the boundedness of Calderón-Zygmund operators from the Hardy space HX (ℝn) to W HX (ℝn), which includes the critical case. All these results are of wide applications. Particularly, when X:=Mqp(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = M_q^p({\mathbb{R}^n})$$\end{document} (the Morrey space), X:=Lp→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = {L^{\vec p}}({\mathbb{R}^n})$$\end{document} (the mixed-norm Lebesgue space) and X:=(EΦq)t(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = {(E_\Phi ^q)_t}({^n})$$\end{document} (the Orlicz-slice space), which are all ball quasi-Banach function spaces rather than quasi-Banach function spaces, all these results are even new. Due to the generality, more applications of these results are predictable.
引用
收藏
页码:2007 / 2064
页数:57
相关论文
共 41 条
[21]   Calderón-Zygmund-Type Operators on Weighted Weak Hardy Spaces over ℝn [J].
Quek T. ;
Yang D. .
Acta Mathematica Sinica, 2000, 16 (1) :141-160
[22]   Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces [J].
Fan Wang ;
Dachun Yang ;
Wen Yuan .
Journal of Fourier Analysis and Applications, 2023, 29
[23]   Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces [J].
Wang, Fan ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (05)
[24]   Bochner–Riesz Means on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces [J].
Jian Tan ;
Linjing Zhang .
Mediterranean Journal of Mathematics, 2023, 20
[25]   Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces [J].
Yan, Xianjie ;
Yang, Dachun ;
Yuan, Wen .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) :769-806
[26]   Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces [J].
Xianjie Yan ;
Dachun Yang ;
Wen Yuan .
Frontiers of Mathematics in China, 2020, 15 :769-806
[27]   Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes [J].
Hongchao Jia ;
Jin Tao ;
Dachun Yang ;
Wen Yuan ;
Yangyang Zhang .
Analysis and Mathematical Physics, 2022, 12
[28]   Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators [J].
Jun Liu .
Banach Journal of Mathematical Analysis, 2021, 15
[29]   Calderón-Zygmund-Type Operators on Weighted Weak Hardy Spaces over R~n [J].
Tongseng Quek Department of Mathematics .
ActaMathematicaSinica(EnglishSeries), 2000, 16 (01) :141-160
[30]   A Fourier multiplier theorem on anisotropic Hardy spaces associated with ball quasi-Banach function spaces [J].
Yan, Xianjie ;
Jia, Hongchao ;
Yang, Dachun .
ANNALS OF FUNCTIONAL ANALYSIS, 2025, 16 (01)