Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies

被引:0
|
作者
V. Ebbing
J. Schröder
P. Neff
机构
[1] Universität Duisburg-Essen,Institut für Mechanik, Fakultät für Ingenieurwissenschaften, Abteilung Bauwissenschaften
[2] Technische Universität Darmstadt,Fachbereich Mathematik
来源
Archive of Applied Mechanics | 2009年 / 79卷
关键词
Polyconvexity; Anisotropy; Finite elasticity;
D O I
暂无
中图分类号
学科分类号
摘要
For simulations of boundary value problems using anisotropic hyperelastic constitutive equations at moderate strains anisotropic polyconvex energies can preferably be used because the existence of minimizers is then automatically guaranteed. For this reason, we investigate the adaptability of anisotropic polyconvex energy functions for the phenomenological description of real anisotropic material responses. Here we focus on the fitting of the fourth-order tangent moduli near the reference state to some experimental data of anisotropic materials. We use anisotropic energies which can be generated for arbitrary anisotropy classes and automatically satisfy the polyconvexity condition. In this paper we consider orthotropic and monoclinic materials.
引用
收藏
页码:651 / 657
页数:6
相关论文
共 50 条
  • [1] Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies
    Ebbing, V.
    Schroeder, J.
    Neff, P.
    ARCHIVE OF APPLIED MECHANICS, 2009, 79 (6-7) : 651 - 657
  • [2] Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors
    Schroeder, J.
    Neff, P.
    Ebbing, V.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (12) : 3486 - 3506
  • [3] Anisotropic polyconvex energies
    Schroeder, Joerg
    POLY-, QUASI- AND RANK-ONE CONVEXITY IN APPLIED MECHANICS, 2010, 516 : 53 - 105
  • [4] Construction of anisotropic polyconvex energies and applications to thin shells
    Ebbing, V.
    Balzani, D.
    Schroeder, J.
    Neff, P.
    Gruttmann, F.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (03) : 639 - 641
  • [5] A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF JACOBIANS
    Miroshnikov, Alexey
    Tzavaras, Athanasios E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) : 87 - 115
  • [6] Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls
    Balzani, Daniel
    Schroeder, Joerg
    Neff, Patrizio
    POLY-, QUASI- AND RANK-ONE CONVEXITY IN APPLIED MECHANICS, 2010, 516 : 131 - 175
  • [7] AN ALTERNATIVE MODEL FOR ANISOTROPIC ELASTICITY BASED ON FABRIC TENSORS
    ZYSSET, PK
    CURNIER, A
    MECHANICS OF MATERIALS, 1995, 21 (04) : 243 - 250
  • [8] COMPOSING THE GREEN AND THE NEUMANN TENSORS IN THE ELASTICITY THEORY OF ANISOTROPIC SOLIDS
    KUZNETSOV, SV
    SOVIET APPLIED MECHANICS, 1991, 27 (07): : 676 - 679
  • [9] Invariant characteristic representations for classical and micropolar anisotropic elasticity tensors
    Xiao, H
    JOURNAL OF ELASTICITY, 1995, 40 (03) : 239 - 265
  • [10] Green's tensors for anisotropic elasticity: Application to quantum dots
    Faux, DA
    Pearson, GS
    PHYSICAL REVIEW B, 2000, 62 (08): : R4798 - R4801